JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (10): 67-73.doi: 10.6040/j.issn.1671-9352.1.2019.037
WANG Fei1*, YANG Ya-li1, JIN Ying-ji2, CAO Shu-miao3
CLC Number:
[1] STODDART C A, REYES R A. Models of HIV-1disease: a review of current status[J]. Drug Discovery Today: Disease Models, 2006, 3(1):113-119. [2] CONNELL MCCLUSKEY C. A model of HIV/AIDS with staged progression and amelioration[J]. Mathematical Biosciences, 2003, 181(1):1-16. [3] JAMES M Hyman, LI Jia. The reproductive number for an HIV model with differential infectivity and staged progression[J]. Linear Algebra and Its Applications, 2005, 398:101-116. [4] VAN DEN DRIESSCHE P, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Biosci, 2002, 180(1/2):29-48. [5] Hossein Khriri, Mohsen Jafari. Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment[J]. Journal of Computation and Applied Mathematics, 2019, 346:323-339. [6] CAI Liming, LI Xuezhi, GHOSH Mini, et al. Stability analysis of an HIV/AIDS epidemic model with treatment[J]. Computational and Applied Mathematics, 2009, 229(1):313-323. [7] LI Jianquan, YANG Yali, ZHOU Yicang. Global stability of an epidemic model with latent stage and vaccination[J]. Nonlinear Analysis: Real World Applications, 2011, 12(4):2163-2173. [8] HUO Haifeng, CHEN Rui, WANG Xunyang. Modelling and stability of HIV/AIDS epidemic model with treatment[J]. Applied Mathematical Modelling, 2016, 40(13/14):6550-6559. [9] XIAO Yanni, TANG Sanyi, ZHOU Yicang. Predicting the HIV/AIDS epidemic and measuring the effect of mobility in mainland China[J]. Journal of Theoretical Biology, 2013, 317(1):271-285. [10] HUO Haifeng, FENG Lixiang. Global stability for an HIV/AIDS epidemic model with different latent stages and treatment[J]. Applied Mathematical Modelling, 2013, 37(3):1480-1489. [11] Ram Naresh, Agraj Tripathi, Dileep Sharma. A nonlinear HIV/AIDS model with contact tracing[J]. Applied Mathematics and Computation, 2011, 217(23):9575-9591. [12] LIU Huijuan, ZHANG Jiafang. Dynamics of two time delays differential equation model to HIV latent infection[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 514:384-395. [13] Olusegun Michael Otunuga. Global stability for a 2n+1 dimensional HIV/AIDS epidemic model with treatments[J]. Mathematical Biosciences, 2018, 299(1):138-152. [14] SANGEETA Saha, SAMANTA G P. Modeling and optimal control of HIV/AIDS prevention through PrEP and limited treatment[J]. Physica A: Statistical Mechanics and its Applications, 2019, 516(1):280-307. [15] RUAN Shigui, WANG Wendi. Dynamical behavior of an epidemic model with a nonlinear incidence rate[J]. Journal of Differential Equations, 2003, 188(1):135-163. [16] ALEXANDER M E, MOGHADAS S M. Bifurcation analysis of an SIRS epidemic model with generalized incidence[J]. SIAM J Appl Math, 2005, 65(1):1794-1816. [17] Shastri Suresh, Burugina N Sharath, Shet Anita. TB-HIV co-infection among pregnant women in Karnataka, South India: A case series[J]. Journal of Infection and Public Health, 2016, 9(4):465-470. [18] LASALLE J P. The stability of dymamical systems[M]. Philadelphia: Regional Conference Series in Applied Mathematics SIMA, 1976. [19] YANG Youping, XIAO Yanni. Threshold dymamics for compartmental epidemic models with impulses[J]. Nonlinear Analysis: Real World Applications, 2012, 13(1):224-234. [20] CAI Liming, LI Xuezhi. Analysis of a SEIV epidemic model with a nonlinear incidence ratel[J]. Appl Math Mode, 2009, 33:2919-2926. [21] CAI Liming, GUO Shuli. Analysis of an extended HIV/AIDS epidemic model with treatment[J]. Applied Mathematics and Computation, 2014, 236:621-627. [22] CAI Liming, FANG Bin, LI Xuezhi. A note of a staged progression HIV model with imperfect vaccine[J]. Applied Mathematics and Computation, 2014, 234:412-416. |
|