JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (8): 1-5.doi: 10.6040/j.issn.1671-9352.0.2021.332

   

Pure projective dimensions on recollements of Abelian categories

YAN Mei-qi, YAO Hai-lou*   

  1. College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • Published:2021-08-09

Abstract: The concepts of pure projective dimensions in Abelian categories are introduced. Let Rab(A,B,C )be a recollement of Abelian categories where A,B and C are Abelian categories, the relations of pure projective objects and pure projective dimensions of objects in three Abelian categories are studied. As applications, the pure projective modules and pure projective dimensions over formal triangular matrix rings are studied. Finally, it is proved that pure projective dimension of B is finite if and only if the pure projective dimensions of A and C are finite under some conditions.

Key words: recollement, Abelian category, pure projective dimension

CLC Number: 

  • O153.3
[1] BEILINSON A A, BERNSTEIN J, DELIGNE P. Faisceaux pervers[M] // Astérisque 100, Soc Math. Paris:[s.n.] , 1982.
[2] MACPHERSON R, VILONEN K. Elementary construction of perverse sheaves[J]. Invent Math, 1986, 84:403-485.
[3] ZHANG Houjun, ZHU Xiaosheng. Gorenstein global dimension of recollements of Abelian categories[J]. Comm Algebra, 2020, 48(2):467-483.
[4] HAGHANY A, VARADARAJAN K. Study of formal triangular matrix rings[J]. Comm Algebra, 1999, 27(11):5507-5525.
[5] HAGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. J Pure Appl Algebra, 2000, 147(1):41-58.
[6] HAGHANY A, MAZROOEI M, VEDADI M R. Pure projectivity and pure injectivity over formal triangular matrix rings[J]. J Algebra Appl, 2012, 11(6):1250107.
[7] ZHANG Pu. Gorenstein-projective modules and symmetric recollements[J]. J Algebra, 2013, 388:65-80.
[8] KIELPINSKI R, SIMSON D. On pure homological dimension[J]. Bull Acad Pol Sci, 1975, 23:1-6.
[9] PUNINSKI G, ROTHMALER P. Pure-projective modules[J]. J London Math Soc, 2005, 71(2):304-320.
[10] SIMSON D. Pure-periodic modules and a structure of pure-projective resolutions[J]. Pacific J Math, 2002, 207(1):235-256.
[11] WARFIFIELD R. Purity and algebraic compactness for modules[J]. Pacific J Math, 1969, 28(3):699-719.
[12] ZHENG Yuefei, HUANG Zhaoyong. On pure derived categories[J]. J Algebra, 2016, 454:252-272.
[13] MITCHELL B. Theory of categories[M]. New York: Academic Press, 1976.
[14] POPESCU N. Abelian categories with applications to rings and modules[J]. Journal of Heat Transfer, 1973, 121(2):253-260.
[15] FRANJOU V, PIRASHVILI T. Comparison of Abelian categories recollements[J]. Doc Math, 2004, 9:41-56.
[16] 冯瑶瑶,姚海楼.阿贝尔范畴黏合上的有限表现维数[J].山东大学学报(理学版),2019, 54(2):89-94. FENG Yaoyao, YAO Hailou. Finitely presented dimensions on recollements of Abelian categories[J]. Journal of Shandong University(Natural Science), 2019, 54(2):89-94.
[17] PSAROUDAKIS C. Homological theory of recollements of Abelian categories[J]. J Algebra, 2014, 398:63-110.
[18] GREEN, EDWARD L. On the representation theory of rings in matrix form[J]. Pacific J Math, 1982, 100(1):123-138.
[19] LI Huanhuan, ZHENG Yuefei, HU Jiangsheng, ZHU Haiyan. Gorenstein projective modules and recollements over triangular matrix rings[J]. Comm Algebra, 2020, 48(11):4932-4947.
[1] FENG Yao-yao, YAO Hai-lou. Finitely presented dimensions on recollements of Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 89-94.
[2] CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!