JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (10): 24-31.doi: 10.6040/j.issn.1671-9352.0.2023.151

Previous Articles     Next Articles

Parameter estimation for competitive Lotka-Volterra model with Lévy noise

Shimiao ZHANG(),Yan LYU*()   

  1. School of Mathematics and Statistics, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • Received:2023-04-10 Online:2023-10-20 Published:2023-10-17
  • Contact: Yan LYU E-mail:2813091458@qq.com;lvyan1998@aliyun.com

Abstract:

Based on the principle of least square and the technique of discretization, parameter estimation problem for stochastic two-species Lotka-Volterra competitive system driven by Lévy noise is studied. The least squares estimator is proved to be asymptotic consistent in the case ε→0 and n→∞, and the asymptotic distribution of the estimator is obtained. Finally, the numerical simulation for the estimators of the competitive model is given, and the results are in line with the theory.

Key words: Lotka-Volterra model, Lévy noise, least squares estimator, asymptotic consistency

CLC Number: 

  • O211.63

Table 1

LSE and AE of the unknown parameters in the case (ε1, ε2)=(0.05, 0.05)"

真值 n=500 n=2 000 n=5 000
LSE AE LSE AE LSE AE
b1=0.8 0.828 9 0.028 9 0.822 2 0.022 2 0.812 7 0.012 7
a11=0.7 0.795 3 0.095 3 0.736 2 0.036 2 0.716 1 0.016 1
a12=0.4 0.383 1 0.016 9 0.402 4 0.002 4 0.402 3 0.002 3
b2=0.9 0.983 0 0.083 0 0.922 4 0.022 4 0.910 7 0.010 7
a21=0.4 0.366 2 0.033 8 0.392 0 0.008 0 0.392 7 0.002 8
a22=0.6 0.682 6 0.082 6 0.620 1 0.020 1 0.608 2 0.008 2

Table 2

LSE and AE of the unknown parameters in the case (ε1, ε2)=(0.01, 0.01)"

真值 n=500 n=2 000 n=5 000
LSE AE LSE AE LSE AE
b1=0.8 0.780 8 0.019 2 0.797 1 0.002 9 0.801 1 0.001 1
a11=0.7 0.715 0 0.015 0 0.710 4 0.010 4 0.707 1 0.007 1
a12=0.4 0.377 4 0.022 6 0.393 3 0.006 7 0.398 0 0.002 0
b2=0.9 0.939 4 0.039 4 0.917 2 0.017 2 0.907 1 0.007 1
a21=0.4 0.388 1 0.011 9 0.395 9 0.004 1 0.397 7 0.002 3
a22=0.6 0.638 0 0.038 0 0.616 0 0.016 0 0.606 8 0.006 8

Table 3

LSE and AE of the unknown parameters in the case (ε1, ε2)=(0.005, 0.005)"

真值 n=500 n=2 000 n=5 000
LSE AE LSE AE LSE AE
b1=0.8 0.789 8 0.010 2 0.795 7 0.004 3 0.799 4 0.000 6
a11=0.7 0.704 8 0.004 8 0.703 5 0.003 5 0.703 2 0.003 2
a12=0.4 0.389 4 0.010 6 0.395 0 0.005 0 0.398 2 0.001 8
b2=0.9 0.917 6 0.017 6 0.910 6 0.010 6 0.906 2 0.006 2
a21=0.4 0.396 4 0.003 6 0.397 5 0.002 5 0.398 9 0.001 1
a22=0.6 0.616 3 0.016 3 0.609 8 0.009 8 0.605 6 0.005 6

Fig.1

Normal QQ plot of the estimators"

1 WEI Chao . Parameter estimation for stochastic Lotka-Volterra model driven by small Lévy noises from discrete observations[J]. Communications in Statistics: Theory and Methods, 2021, 50 (24): 6014- 6023.
doi: 10.1080/03610926.2020.1738489
2 APPLEBAUM D . Lévy processes and stochastic calculus[M]. Cambridge: Cambridge University Press, 2009: 100- 131.
3 BAO J H , MAO X R , YIN G , et al. Competitive Lotka-Volterra population dynamics with jumps[J]. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74 (17): 6601- 6616.
4 马永刚, 张启敏, 刘俊梅. 具有随机扰动的Lotka-Volterra竞争模型的参数估计[J]. 数学杂志, 2018, 38 (2): 367- 374.
MA Yonggang , ZHANG Qimin , LIU Junmei . Parameter estimation for Lotka-Volterra competition model with random perturbations[J]. Journal of Mathematics, 2018, 38 (2): 367- 374.
5 蒋达清. 随机微分方程中的参数估计与假设检验问题[D]. 长春: 东北师范大学, 2006.
JIANG Daqing. Problems of estimation and hypothesis testing of parameters in stochastic differential equations[D]. Changchun: Northeast Normal University, 2006.
6 LIU Meng , WANG Ke . Stochastic Lotka-Volterra systems with Lévy noise[J]. Journal of Mathematical Analysis and Applications, 2014, 410 (2): 750- 763.
doi: 10.1016/j.jmaa.2013.07.078
7 BAO Jianhai , YUAN Chenggui . Stochastic population dynamics driven by Lévy noise[J]. Journal of Mathematical Analysis and Applications, 2012, 391 (2): 363- 375.
doi: 10.1016/j.jmaa.2012.02.043
8 ZHAO Huiyan , ZHANG Chongqi , WEN Limin . Maximum likelihood estimation for stochastic Lotka-Volterra model with jumps[J]. Advances in Difference Equations, 2018, 148 (1): 1- 22.
9 WEI Chao , WEI Yan , ZHOU Yingying . Least squares estimation for discretely observed stochastic Lotka-Volterra model driven by small α-stable noises[J]. Discrete Dynamics in Nature and Society, 2020, 2020 (1): 1- 11.
10 LONG Hongwei , MA Chunhua , SHIMIZU Y . Least squares estimators for stochastic differential equations driven by small Lévy noises[J]. Stochastic Processes and Their Applications, 2017, 127 (5): 1475- 1495.
doi: 10.1016/j.spa.2016.08.006
[1] Yejun CHEN,Huisheng DING. θ-almost periodic solutions for stochastic differential equations in infinite dimensions with Stepanov almost periodic coefficients [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 113-126.
[2] ZHANG Ya-juan, LYU Yan. Approximation of stochastic vibration equations with variable damping [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 59-65.
[3] XIAO Xin-ling. Forward-backward stochastic differential equations on Markov chains [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 46-54.
[4] CUI Jing, LIANG Qiu-ju. Existence and controllability of nonlocal stochastcic integro-differential equations driven by fractional Brownian motion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 81-88.
[5] ZHANG Chun-yan, HAO Sheng-nan, FENG Li-chao. Stochastic suppression on explosive solutions of a class of nonlinear impulsive differential systems by noise [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 29-36.
[6] FANG Rui, MA Jiao-jiao, FAN Sheng-jun. A stability theorem for solutions of a class of backward stochastic differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 39-44.
[7] WANG Chun-sheng, LI Yong-ming. Stability of neutral stochastic differential equations with some variable delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 82-87.
[8] HUANG Zong-Yuan, ZHANG Feng. Viscosity solutions of multidimensional quasilinear parabolic PDEs [J]. J4, 2008, 43(12): 5-9.
[9] HAN Bao-yan,ZHU Bo and SHI Yu-feng . The limitation theorem of g-supersolution for BSDEs under non-Lipschitzian coefficient [J]. J4, 2007, 42(1): 8-13 .
[10] ZHANG Hui,NIE Xiu-shan . Minimal pricing models of European stock options under Knight uncertainty [J]. J4, 2007, 42(11): 121-126 .
[11] XIAO Hua . Continuous dependence of the solution of multidimensional reflected backward stochastic differential equations on the parameters [J]. J4, 2007, 42(2): 68-71 .
[12] ZHANG Hui . Generalized recursive preference in incomplete information [J]. J4, 2006, 41(1): 62-68 .
[13] WANG Ying and HUANG Zhen . Adapted solution of a backward stochastic evolution equation with nonLipschitz coefficients [J]. J4, 2007, 42(6): 22-26 .
[14] LI Zhi-tao,WANG Gang-chen and MU Chao . The local necessary condition for a type of stochastic optimal control problem and its application to a portfolio choice problem [J]. J4, 2007, 42(6): 7-11 .
[15] YANG Wei-qiang and YANG Li . Nonparametric estimation and simulation of backward stochastic differential equation [J]. J4, 2006, 41(2): 34-38 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[2] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[3] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[4] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[5] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[6] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[7] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[8] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[9] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[10] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .