JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (10): 32-42, 53.doi: 10.6040/j.issn.1671-9352.0.2023.279

Previous Articles     Next Articles

Hopf bifurcation of a vegetation-water reaction-diffusion model with time delay

Gaihui GUO(),Jingjing WANG,Wangrui LI   

  1. School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
  • Received:2023-06-27 Online:2023-10-20 Published:2023-10-17

Abstract:

Taking the time delay τ as the bifurcation parameter, the effect of time delay on the stability of the positive steady state point and the existence of Hopf bifurcation are given by analyzing the characteristic equation. The criteria for the direction of Hopf bifurcation and the stability of periodic solutions are obtained by the normal form theory and the center manifold theorem. Finally, the theoretical results are verified by numerical simulations.

Key words: vegetation-water model, time delay, Hopf bifurcation, stability

CLC Number: 

  • O175.26

Fig.1

Parameter a=14.74>a0, positive equilibrium point (u*, v*) of system (3) is locally asymptotically stable without time delay and diffusion"

Fig.2

Parameter a=14.240, system (3) produces stable periodic closed orbits without time delay and diffusion"

Fig.3

Parameter τ=0.46 < τ00, the positive equilibrium point (u*, v*) of system (3) is locally asymptotically stable"

Fig.4

Parameter τ=0.57>τ00, system (3) produces stable bifurcating periodic solutions"

1 KLAUSMEIER C A . Regular and irregular patterns in semiarid vegetation[J]. Science, 1999, 284 (5421): 1826- 1828.
doi: 10.1126/science.284.5421.1826
2 SHERRATT J A . An analysis of vegetation stripe formation in semi-arid landscapes[J]. Journal of Mathematical Biology, 2005, 51 (2): 183- 197.
doi: 10.1007/s00285-005-0319-5
3 SUN Guiquan , LI Li , ZHANG Zike . Spatial dynamics of a vegetation model in an arid flat environment[J]. Nonlinear Dynamics, 2013, 73, 2207- 2219.
doi: 10.1007/s11071-013-0935-3
4 XIE Boli . Pattern dynamics in a vegetation model with time delay[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 443, 460- 466.
doi: 10.1016/j.physa.2015.09.075
5 WANG Xiaoli , SHI Junping , ZHANG Guohong . Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction[J]. Journal of Mathematical Analysis and Applications, 2021, 497 (1): 124860.
doi: 10.1016/j.jmaa.2020.124860
6 DING Dawei , ZHANG Xiaoyun , WANG Nian , et al. Hybrid control of delay induced Hopf bifurcation of dynamical small-world network[J]. Journal of Shanghai Jiaotong University (Science), 2017, 22, 206- 215.
doi: 10.1007/s12204-017-1823-7
7 JIA Yunfeng . Bifurcation and pattern formation of a tumor-immune model with time-delay and diffusion[J]. Mathematics and Computers in Simulation, 2020, 178, 92- 108.
doi: 10.1016/j.matcom.2020.06.011
8 WU Shuhao , SONG Yongli . Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition[J]. Nonlinear Analysis: Real World Applications, 2019, 48, 12- 39.
doi: 10.1016/j.nonrwa.2019.01.004
9 郭改慧, 刘晓慧. 一类自催化可逆生化反应模型的Hopf分支及其稳定性[J]. 数学物理学报, 2021, 41 (1): 166- 177.
GUO Gaihui , LIU Xiaohui . Hopf bifurcation and stability for an autocatalytic reversible biochemical reaction model[J]. Acta Mathematica Scientia, 2021, 41 (1): 166- 177.
10 XUE Qiang , SUN Guiquan , LIU Chen , et al. Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment[J]. Nonlinear Dynamics, 2020, 99 (4): 3407- 3420.
doi: 10.1007/s11071-020-05486-w
11 YI F Q , GAFFNEY E A , SEIRIN-LEE S . The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system[J]. Discrete and Continuous Dynamical Systems(Series B), 2017, 22 (2): 647- 668.
doi: 10.3934/dcdsb.2017031
12 GUO Gaihui , LIU Le , LI Bingfang , et al. Qualitative analysis on positive steady-state solutions for an autocatalysis model with high order[J]. Nonlinear Analysis: Real World Applications, 2018, 41, 665- 691.
doi: 10.1016/j.nonrwa.2017.11.010
13 NIE Hua , SHI Yao , WU Jianhua . The effect of diffusion on the dynamics of a predator-prey chemostat model[J]. SIAM Journal on Applied Mathematics, 2022, 82 (3): 821- 848.
doi: 10.1137/21M1432090
14 SHI Qingyan , SHI Junping , SONG Yongli . Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition[J]. Journal of Differential Equations, 2017, 263 (10): 6537- 6575.
doi: 10.1016/j.jde.2017.07.024
15 伏升茂, 苏发儒. 带恐惧因子和强Allee效应的捕食者-食饵扩散模型的Hopf分支[J]. 西北师范大学学报(自然科学版), 2019, 55 (3): 14- 20.
FU Shengmao , SU Faru . Hopf bifurcation of a predator-prey diffusive model with fear factor and strong Allee effect[J]. Journal of Northwest Normal University (Natural Science Edition), 2019, 55 (3): 14- 20.
16 WU Jianhong . Theory and applications of partial functional differential equations[M]. New York: Springer, 1996: 183- 243.
17 KABIR M H , GANI M O . Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation[J]. Journal of Theoretical Biology, 2022, 536, 110997.
doi: 10.1016/j.jtbi.2021.110997
18 YANG Ruizhi , WEI Junjie . The effect of delay on a diffusive predator-prey system with modified Leslie-Gower functional response[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40, 51- 73.
doi: 10.1007/s40840-015-0261-7
19 CHANG Xiaoyuan , WEI Junjie . Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting[J]. Nonlinear Analysis: Modelling and Control, 2012, 17 (4): 379- 409.
doi: 10.15388/NA.17.4.14046
[1] Zipeng HE,Yaying DONG. Steady-state solutions of a Holling type Ⅱ competition model in heterogeneous environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 73-81.
[2] Yadi WANG,Hailong YUAN. Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 92-103.
[3] Yun NI,Xiping LIU. Existence and Ulam stability for positive solutions of conformable fractional coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 82-91.
[4] HU Yuwen, XU Jiucheng, ZHANG Qianqian. Lyapunov stability of decision evolution set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 52-59.
[5] LIU Yun, ZHU Pengjun, CHEN Luyao, SONG Kai. Optimization of blockchain sharding by profit incentive algorithm based on edge computing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 88-96.
[6] XU Yue, HAN Xiaoling. Impact of media effects with dual delays on control of echinococcosis in Tibet [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 53-62.
[7] HUANG Yu, GAO Guang-hua. Compact difference schemes for the fourth-order parabolic equations with the third Dirichlet boundary [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 16-28.
[8] LI Yonghua, ZHANG Cunhua. Stability of a single population delayed reaction-diffusion model with Dirichlet boundary condition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 122-126.
[9] CHEN Gang, ZHANG Rui. Dynamics of a two-strain co-infection epidemic model with vaccination [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 84-96.
[10] LI Lei, YE Yongsheng. Exponential stability of reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 67-74.
[11] CAO Qian, LI Yanling, SHAN Weihua. Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 43-53.
[12] Wenyan LIU,Shuai QIAO,Chenghua GAO. Global dynamics analysis of a class of Filippov-type HR neuron model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 13-23.
[13] LI Xiao-wei, LI Gui-hua. Dynamic behaviors analysis of COVID-19 model with environmental virus effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 10-15.
[14] HUO Lin-jie, ZHANG Cun-hua. Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 16-24.
[15] SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[2] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[3] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[4] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[5] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[6] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[7] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[8] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[9] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[10] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .