JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (10): 43-53.doi: 10.6040/j.issn.1671-9352.0.2022.308

Previous Articles     Next Articles

Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect

Qian CAO1(),Yanling LI2,*(),Weihua SHAN1   

  1. 1. School of Science, Chang'an University Xi'an 710064, Shaanxi, China
    2. School of Mathematics and Statistics, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
  • Received:2022-05-30 Online:2023-10-20 Published:2023-10-17
  • Contact: Yanling LI E-mail:mathcq19@chd.edu.cn;yanlingl@snnu.edu.cn

Abstract:

For a reaction-diffusion predator-prey system with prey refuge and fear effect, the Turing instability of the positive constant solution for the system and a priori estimates of solutions for the system are investigated. It is proved that there is no nonconstant positive steady-state solution for the system under certain parameter conditions. Moreover, taking the diffusion coefficient of the predator as the bifurcation parameter, the global structure of the bifurcation solution is constructed. It is found that the bifurcation solution can be extended to infinity when the diffusion coefficient of predator is greater than some critical value. Finally, by numerical simulations, the theoretical results are verified and supplemented.

Key words: Turing instability, bifurcation theory, prey refuge, fear effect, reaction-diffusion predator-prey model

CLC Number: 

  • O175

Fig.1

Spatio-temporal patterns generated by the system (1) for $d_{2}=1<\tilde{d}_{2}$"

Fig.2

Spatio-temporal patterns generated by the system (1) for $d_{2}=500>\tilde{d}_{2}$"

Fig.3

Spatio-temporal patterns generated by the system (1) for d1=0.1"

Fig.4

Spatio-temporal patterns generated by the system (1) for m=0"

Fig.5

Spatio-temporal patterns generated by the system (1) for k=0, d1=0.01 and d2=500"

1 TAYLOR R J . Predation[M]. New York: Chapman and Hall, 1984.
2 EDUARDO G O , RODRIGO R J . Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability[J]. Ecological Modelling, 2003, 166 (1/2): 135- 146.
3 MUKHERJEE D , MAJI C . Bifurcation analysis of a Holling type Ⅱ predator-prey model with refuge[J]. Chinese Journal of Physics, 2020, 65, 153- 162.
doi: 10.1016/j.cjph.2020.02.012
4 MUKHERJEE D . The effect of refuge and immigration in a predator-prey system in the presence of a competitor for the prey[J]. Nonlinear Analysis: Real World Applications, 2016, 31, 277- 287.
doi: 10.1016/j.nonrwa.2016.02.004
5 CHEN Fengde , CHEN Liujuan , XIE Xiangdong . On a Leslie-Gower predator-prey model incorporating a prey refuge[J]. Nonlinear Analysis: Real World Applications, 2009, 10 (5): 2905- 2908.
doi: 10.1016/j.nonrwa.2008.09.009
6 CHEN Fengde , MA Zhaozhi , ZHANG Huiying . Global asymptotical stability of the positive equilibrium of the Lotka-Volterra prey-predator model incorporating a constant number of prey refuges[J]. Nonlinear Analysis: Real World Applications, 2012, 13 (6): 2790- 2793.
doi: 10.1016/j.nonrwa.2012.04.006
7 SLIMANI S , DE FITTE P R , BOUSSAADA I . Dynamic of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge[J]. Discrete and Continuous Dynamical Systems: B, 2019, 24 (9): 5003- 5039.
8 GUAN Xiaona , WANG Weiming , CAI Yongli . Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge[J]. Nonlinear Analysis: Real World Applications, 2011, 12 (4): 2385- 2395.
doi: 10.1016/j.nonrwa.2011.02.011
9 CRESSWELL W . Predation in bird populations[J]. Journal of Ornithology, 2011, 152 (1): 251- 263.
10 LIMA S L . Nonlethal effects in the ecology of predator-prey interactions[J]. Bioscience, 1998, 48 (1): 25- 34.
doi: 10.2307/1313225
11 LIMA S L . Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation[J]. Biological Reviews, 2009, 84 (3): 485- 513.
doi: 10.1111/j.1469-185X.2009.00085.x
12 CREEL S , CHRISTIANSON D . Relationships between direct predation and risk effects[J]. Trends in Ecology and Evolution, 2008, 23 (4): 194- 201.
doi: 10.1016/j.tree.2007.12.004
13 ZANETTE L Y , WHITE A F , ALLEN M C , et al. Perceived predation risk reduces the number of offspring songbirds produce per year[J]. Science, 2011, 334 (6061): 1398- 1401.
doi: 10.1126/science.1210908
14 WANG Xiaoying , ZANETTE L , ZOU Xingfu . Modelling the fear effect in predator-prey interactions[J]. Journal of Mathematical Biology, 2016, 73 (5): 1179- 1204.
doi: 10.1007/s00285-016-0989-1
15 DAS M , SAMANTA G P . A delayed fractional order food chain model with fear effect and prey refuge[J]. Mathematics and Computers in Simulation, 2020, 178, 218- 245.
doi: 10.1016/j.matcom.2020.06.015
16 MONDAL S , SAMANTA G P , NIETO J J . Dynamics of a predator-prey population in the presence of resource subsidy under the influence of nonlinear prey refuge and fear effect[J]. Complexity, 2021, 2021, 1- 38.
17 QI Haokun , MENG Xinzhu , HAYAT T , et al. Bifurcation dynamics of a reaction-diffusion predator-prey model with fear effect in a predator-poisoned environment[J]. Mathematical Methods in the Applied Sciences, 2022, 45 (10): 6217- 6254.
doi: 10.1002/mma.8167
18 CAI Yongli , GUI Zhanji , ZHANG Xuebing , et al. Bifurcations and pattern formation in a predator-prey model[J]. International Journal of Bifurcation and Chaos, 2018, 28 (11): 1- 17.
19 CASTEN R G , HOLLAND C J . Stability properties of solutions to systems of reaction-diffusion equations[J]. SIAM Journal on Applied Mathematics, 1977, 33 (2): 353- 364.
doi: 10.1137/0133023
20 TURING A M . The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal Society of London(Series B), 1952, 237 (641): 37- 72.
21 LOU Yuan , NI Weiming . Diffusion, self-diffusion and cross-diffusion[J]. Journal of Differential Equations, 1996, 131 (1): 79- 131.
doi: 10.1006/jdeq.1996.0157
22 CRANDALL M G , RABINOWITZ P H . Bifurcation from simple eigenvalues[J]. Journal of Functional Analysis, 1971, 8 (2): 321- 340.
doi: 10.1016/0022-1236(71)90015-2
23 JANG J , NI Weiming , TANG Moxun . Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model[J]. Journal of Dynamics and Differential Equations, 2004, 16 (2): 297- 320.
doi: 10.1007/s10884-004-2782-x
24 RABINOWITZ P H . Some global results for nonlinear eigenvalue problems[J]. Journal of Functional Analysis, 1971, 7 (3): 487- 513.
doi: 10.1016/0022-1236(71)90030-9
25 NISHIURA Y . Global structure of bifurcating solutions of some reaction-diffusion systems[J]. SIAM Journal on Mathematical Analysis, 1982, 13 (4): 555- 593.
doi: 10.1137/0513037
26 TAKAGI I . Point-condensation for a reaction-diffusion system[J]. Journal of Differential Equations, 1986, 61 (2): 208- 249.
doi: 10.1016/0022-0396(86)90119-1
[1] SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90.
[2] ZHOU Yan, ZHANG Cun-hua. Stability and Turing instability of a predator-prey reaction-diffusion system with schooling behavior [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 73-81.
[3] YANG Zhong-liang, GUO Gai-hui. Bifurcation analysis of positive solutions for a predator-prey model with B-D functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 9-15.
[4] ZHANG Dao-xiang, ZHAO Li-xian, HU Wei. Turing instability induced by cross-diffusion in a three-species food chain model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 88-97.
[5] LI Xiao-yan, XU Man. Existence and multiplicity of nontrivial solutions of Dirichlet problems for second-order impulsive differential equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 29-35.
[6] LI Hai-xia. Coexistence solutions for a predator-prey model with additive Allee effect and a protection zone [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 88-94.
[7] ZHANG Li-na, WU Shou-yan. Global behavior of solutions for a modified LeslieGower #br# predator-prey system with diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 86-91.
[8] ZHANG Lu, MA Ru-yun. Bifurcation structure of asymptotically linear second-order #br# semipositone discrete boundary value problem#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 79-83.
[9] JIANG Liang-zhan, LI Yan-ling*. Existence of positive non-constant steady-states to a predator-prey system incorporating a constant prey refuge [J]. J4, 2011, 46(2): 15-21.
[10] BIE Qunyi. Existence of positive nonconstant steadystates solutions to a
preypredator system incorporating a prey refuge
[J]. J4, 2009, 44(3): 50-55 .
[11] ZHANG Li-na,LI Yan-ling,XIE Yu-long . Global bifurcation of a predator-prey system incorporating a prey refuge [J]. J4, 2007, 42(12): 110-115 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[2] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[3] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[4] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[5] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[6] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[7] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[8] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[9] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[10] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .