JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (10): 32-42, 53.doi: 10.6040/j.issn.1671-9352.0.2023.279
Previous Articles Next Articles
Gaihui GUO(),Jingjing WANG,Wangrui LI
CLC Number:
1 |
KLAUSMEIER C A . Regular and irregular patterns in semiarid vegetation[J]. Science, 1999, 284 (5421): 1826- 1828.
doi: 10.1126/science.284.5421.1826 |
2 |
SHERRATT J A . An analysis of vegetation stripe formation in semi-arid landscapes[J]. Journal of Mathematical Biology, 2005, 51 (2): 183- 197.
doi: 10.1007/s00285-005-0319-5 |
3 |
SUN Guiquan , LI Li , ZHANG Zike . Spatial dynamics of a vegetation model in an arid flat environment[J]. Nonlinear Dynamics, 2013, 73, 2207- 2219.
doi: 10.1007/s11071-013-0935-3 |
4 |
XIE Boli . Pattern dynamics in a vegetation model with time delay[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 443, 460- 466.
doi: 10.1016/j.physa.2015.09.075 |
5 |
WANG Xiaoli , SHI Junping , ZHANG Guohong . Bifurcation and pattern formation in diffusive Klausmeier-Gray-Scott model of water-plant interaction[J]. Journal of Mathematical Analysis and Applications, 2021, 497 (1): 124860.
doi: 10.1016/j.jmaa.2020.124860 |
6 |
DING Dawei , ZHANG Xiaoyun , WANG Nian , et al. Hybrid control of delay induced Hopf bifurcation of dynamical small-world network[J]. Journal of Shanghai Jiaotong University (Science), 2017, 22, 206- 215.
doi: 10.1007/s12204-017-1823-7 |
7 |
JIA Yunfeng . Bifurcation and pattern formation of a tumor-immune model with time-delay and diffusion[J]. Mathematics and Computers in Simulation, 2020, 178, 92- 108.
doi: 10.1016/j.matcom.2020.06.011 |
8 |
WU Shuhao , SONG Yongli . Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition[J]. Nonlinear Analysis: Real World Applications, 2019, 48, 12- 39.
doi: 10.1016/j.nonrwa.2019.01.004 |
9 | 郭改慧, 刘晓慧. 一类自催化可逆生化反应模型的Hopf分支及其稳定性[J]. 数学物理学报, 2021, 41 (1): 166- 177. |
GUO Gaihui , LIU Xiaohui . Hopf bifurcation and stability for an autocatalytic reversible biochemical reaction model[J]. Acta Mathematica Scientia, 2021, 41 (1): 166- 177. | |
10 |
XUE Qiang , SUN Guiquan , LIU Chen , et al. Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment[J]. Nonlinear Dynamics, 2020, 99 (4): 3407- 3420.
doi: 10.1007/s11071-020-05486-w |
11 |
YI F Q , GAFFNEY E A , SEIRIN-LEE S . The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system[J]. Discrete and Continuous Dynamical Systems(Series B), 2017, 22 (2): 647- 668.
doi: 10.3934/dcdsb.2017031 |
12 |
GUO Gaihui , LIU Le , LI Bingfang , et al. Qualitative analysis on positive steady-state solutions for an autocatalysis model with high order[J]. Nonlinear Analysis: Real World Applications, 2018, 41, 665- 691.
doi: 10.1016/j.nonrwa.2017.11.010 |
13 |
NIE Hua , SHI Yao , WU Jianhua . The effect of diffusion on the dynamics of a predator-prey chemostat model[J]. SIAM Journal on Applied Mathematics, 2022, 82 (3): 821- 848.
doi: 10.1137/21M1432090 |
14 |
SHI Qingyan , SHI Junping , SONG Yongli . Hopf bifurcation in a reaction-diffusion equation with distributed delay and Dirichlet boundary condition[J]. Journal of Differential Equations, 2017, 263 (10): 6537- 6575.
doi: 10.1016/j.jde.2017.07.024 |
15 | 伏升茂, 苏发儒. 带恐惧因子和强Allee效应的捕食者-食饵扩散模型的Hopf分支[J]. 西北师范大学学报(自然科学版), 2019, 55 (3): 14- 20. |
FU Shengmao , SU Faru . Hopf bifurcation of a predator-prey diffusive model with fear factor and strong Allee effect[J]. Journal of Northwest Normal University (Natural Science Edition), 2019, 55 (3): 14- 20. | |
16 | WU Jianhong . Theory and applications of partial functional differential equations[M]. New York: Springer, 1996: 183- 243. |
17 |
KABIR M H , GANI M O . Numerical bifurcation analysis and pattern formation in a minimal reaction-diffusion model for vegetation[J]. Journal of Theoretical Biology, 2022, 536, 110997.
doi: 10.1016/j.jtbi.2021.110997 |
18 |
YANG Ruizhi , WEI Junjie . The effect of delay on a diffusive predator-prey system with modified Leslie-Gower functional response[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40, 51- 73.
doi: 10.1007/s40840-015-0261-7 |
19 |
CHANG Xiaoyuan , WEI Junjie . Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting[J]. Nonlinear Analysis: Modelling and Control, 2012, 17 (4): 379- 409.
doi: 10.15388/NA.17.4.14046 |
[1] | Zipeng HE,Yaying DONG. Steady-state solutions of a Holling type Ⅱ competition model in heterogeneous environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 73-81. |
[2] | Yadi WANG,Hailong YUAN. Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 92-103. |
[3] | Yun NI,Xiping LIU. Existence and Ulam stability for positive solutions of conformable fractional coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 82-91. |
[4] | HU Yuwen, XU Jiucheng, ZHANG Qianqian. Lyapunov stability of decision evolution set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 52-59. |
[5] | LIU Yun, ZHU Pengjun, CHEN Luyao, SONG Kai. Optimization of blockchain sharding by profit incentive algorithm based on edge computing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 88-96. |
[6] | XU Yue, HAN Xiaoling. Impact of media effects with dual delays on control of echinococcosis in Tibet [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 53-62. |
[7] | HUANG Yu, GAO Guang-hua. Compact difference schemes for the fourth-order parabolic equations with the third Dirichlet boundary [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 16-28. |
[8] | LI Yonghua, ZHANG Cunhua. Stability of a single population delayed reaction-diffusion model with Dirichlet boundary condition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 122-126. |
[9] | CHEN Gang, ZHANG Rui. Dynamics of a two-strain co-infection epidemic model with vaccination [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 84-96. |
[10] | LI Lei, YE Yongsheng. Exponential stability of reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 67-74. |
[11] | CAO Qian, LI Yanling, SHAN Weihua. Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 43-53. |
[12] | Wenyan LIU,Shuai QIAO,Chenghua GAO. Global dynamics analysis of a class of Filippov-type HR neuron model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 13-23. |
[13] | LI Xiao-wei, LI Gui-hua. Dynamic behaviors analysis of COVID-19 model with environmental virus effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 10-15. |
[14] | HUO Lin-jie, ZHANG Cun-hua. Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 16-24. |
[15] | SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90. |
|