JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (11): 135-146.doi: 10.6040/j.issn.1671-9352.0.2022.278

Previous Articles     Next Articles

Vertex reducibletotal labeling algorithm for graphs

Linyu LAN1(),Jingwen LI1,*(),Shucheng ZHANG1,Lijing ZHANG2,Huayu SHEN1   

  1. 1. School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
    2. School of Information Processing and Control Engineering, Lanzhou Petrochemical University of Vocational Technology, Lanzhou 730060, Gansu, China
  • Received:2022-05-11 Online:2023-11-20 Published:2023-11-07
  • Contact: Jingwen LI E-mail:1106375858@qq.com;lijingwen28@163.com

Abstract:

For an undirected connected graph G(V, E), if there exists a injective function f: V(G)∪E(G)→{1, 2, …, |V|+|E|}, such that any edge $\operatorname{Sum}(u)=f(u)+\sum\limits_{u v \in E(G)} f(u v)=K $, K is a constant, where u is any vertex in G(p, q) with the same degree, then G(p, q) is a vertex reducible total labeling (VRTL) graph, and the injective function f is vertex reducible total labeling. By means of computer and the way of optimizing the solution space of the vertex reducible total labeling, the algorithm of the vertex reducible total labeling is designed, and the solution space of the vertex reducible total labeling is recursively searched. By observing the labeling law of graphs within finite vertices, the labeling law of graphs of the same kind that can describe infinite vertices is extended and the total labeling theorems with extensibility and mathematical proof are given.

Key words: graph, total labeling, reducible total labeling, vertex reducible total labeling, vertex reducible total labeling algorithm

CLC Number: 

  • O157.6

Fig.1

Generalized sun graph CnP2"

Fig.2

Example of total labeled results of even order Cn(4≤n≤8)"

Table 1

VRTL labeled results of G(p, q)(p=q) (3≤p≤9)"

G(p, q)(p=q) 图总数 VRTL图个数 非VRTL图个数
(3, 3) 1 1 0
(4, 4) 2 2 0
(5, 5) 5 5 0
(6, 6) 13 13 0
(7, 7) 33 33 0
(8, 8) 89 89 0
(9, 9) 240 240 0

Fig.3

Example of total labeled results of partial unicyclic graph G(p, q)(p=q)(3≤p≤9)"

Table 2

VRTL labeled results of G(p, q)(p=q-1) (4≤p≤9)"

G(p, q)(p=q-1) 图总数 VRTL图个数 非VRTL图个数
(4, 5) 1 1 0
(5, 6) 5 5 0
(6, 7) 19 19 0
(7, 8) 67 67 0
(8, 9) 236 236 0
(9, 10) 797 797 0

Fig.4

Example of total labeled results of partial bicyclic graph G(p, q)(p=q-1) (4≤p≤9)"

1 RINGEL G. Problem 25 in theory of graphs and its application[C]//Proceedings of the Symposium, New York, US: Academic Press, 1963: 171-234.
2 MACDOUGALL J A , MILLER M , SLAMIN , W W D . Vertex-magic total labelings of graphs[J]. Utilitas Mathematica, 2002, 61, 3- 21.
3 BURRIS A C , SCHELP R H . Vertex-distinguishing proper edge-colorings[J]. Journal of Graph Theory, 1997, 26 (2): 73- 82.
doi: 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C
4 BALISTER P N , RIORDAN O M , SCHELP R H . Vertex-distinguishing edge colorings of graphs[J]. Journal of Graph Theory, 2003, 42 (2): 95- 109.
doi: 10.1002/jgt.10076
5 奚悦. 若干图标号问题的研究[D]. 大连: 大连理工大学, 2007.
XI Yue. Research on some labeling problems in graph theory[D]. Dalian: Dalian University of Technology, 2007.
6 ZHU Enqiang, ZHANG Zhongfu, WANG Zhiwen, et al. Adjacent vetex reducible vertex-total coloring of graphs[C]// 2009 International Conference on Computational Intelligence and Software Engineering, Wuhan: IEEE, 2009: 1-3.
7 LI Jingwen, ZHANG Zhongfu, ZHU Enqiang, et al. Adjacent vertex reducible edge-total coloring of graphs[C]//2009 2nd International Conference on Biomedical Engineering and Informatics. New York: IEEE, 2009: 1-3.
8 李小慧. 随机图的可约染色算法研究[D]. 兰州: 兰州交通大学, 2015.
LI Xiaohui. Research on reducible coloring algorithm of random graph[D]. Lanzhou: Lanzhou Jiatong University, 2015.
9 席晓慧, 李敬文, 孙帅. 若干图的顶点魔幻全标号[J]. 西南师范大学学报(自然科学版), 2020, 45(8): 18-24.
XI Xiaohui, LI Jingwen, SUN Shuai. Journal of Southwest Normal University(Natural Science Edition), 2020, 45(8): 18-24.
10 李敬文, 康玉梅, 张树成, 等. 图的点和可约边染色[J]. 武汉大学学报(理学版), 2022, 68 (5): 478- 459.
LI J W , KANG Y M , ZHANG S C , et al. The vertex sum reducible edge coloring for graphs[J]. Journal of Wuhan University (Natural Science Edition), 2022, 68 (5): 478- 459.
11 贾秀卿, 李沐春. 单圈图的D(2)-点可区别边染色[J]. 吉林大学学报(理学版), 2021, 59 (4): 807- 815.
JIA Xiuqing , LI Muchun . D(2)-vertex-distinguishing edge coloring of unicyclic graphs[J]. Journal of Jilin University(Science Edition), 2021, 59 (4): 807- 815.
12 罗榕, 李敬文, 张树成, 等. 若干联图的邻点和可约边染色[J]. 华中师范大学学报(自然科学版), 2023, 57 (2): 201- 207.
LUO Rong , LI Jingwen , ZHANG Shucheng , et al. Adjacent points sum reducible edge coloring of some joint graphs[J]. Journal of Central China Normal University (Natural Science Edition), 2023, 57 (2): 201- 207.
13 王树禾. 图论及其算法[M]. 合肥: 中国科学技术大学出版社, 1990.
WANG Shuhe . Graph theory and its algorithm[M]. Hefei: University of Science and Technology of China Press, 1990.
14 徐俊明. 图论及其应用[M]. 合肥: 中国科学技术大学出版社, 1998.
XU Junming . Graph theory and its application[M]. Hefei: University of Science and Technology of China Press, 1998.
15 WEST D B . Introduction to graph theory[M]. Upper Saddle River: Prentice Hall, 2001.
16 王亚茹, 姚兵. 关于太阳图奇偶可分的魔幻标号[J]. 东北师大学报(自然科学版), 2017, 49 (4): 10- 14.
WANG Yaru , YAO Bing . On the magic labeling divided into parity of Sun-graphs[J]. Journal of Northeast Normal University (Natural Science Edition), 2017, 49 (4): 10- 14.
17 徐喜荣. 图的标号问题的研究[D]. 大连: 大连理工大学, 2006.
XU Xirong. Research on labeling problems in graph theory[D]. Dalian: Dalian University of Technology, 2006.
[1] Yujia NA,Jun XIE,Haiyang YANG,Xinying XU. Context fusion-based knowledge graph completion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 71-80.
[2] Yuyuan SU,Zongtian WEI,Yan WANG. The p-edge neighbor scattering number of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 57-62.
[3] Lina ZHU,Jingwen LI,Shuai SUN. L(2, 1)- edge coloring algorithm for several kinds of composite graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 63-72.
[4] Le CHANG,Zongtian WEI. Graph N[S]-T reconstruction based on neighbor connectivity optimization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 40-45, 76.
[5] Huiling YIN,Jingrong CHEN,Xiaoyan SU. The k-path vertex cover in some products graphs of star graph and bipartite graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(6): 18-24, 39.
[6] Ying JI,Bo DENG,Haixing ZHAO,Yanlong TANG. Domination entropy based on graph operations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 140-150.
[7] Xinsheng WANG,Xiaofei ZHU,Chenghong LI. Label guided multi-scale graph neural network for protein-protein interactions prediction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 22-30.
[8] Longmiao XIA,Zongtian WEI,Liping DING. Burning connectivity of oriented graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 127-133.
[9] Jin LI,Changqing XU. Adjacent vertex distinguishing edge coloring of IC-planar graphs without intersecting triangles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 134-139.
[10] Hui HAN,Yutong LIU,Haiyuan YAO. Recursive solving of di-forcing polynomials for ladder graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 127-134, 146.
[11] WANG Ligong, YU Zhiming, ZHOU Feng, TAO Lijie, XING Luqi. Two kinds of integral graphs based on complete graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 155-159.
[12] WANG Ranran, WEN Fei, ZHANG Shucheng. On the generalized characteristic polynomial of a family of graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(11): 165-174.
[13] LI Xin-yu, FAN Hui, LIU Jing-lei. Robust clustering based on adaptive graph regularization and low-rank matrix decomposition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 21-38.
[14] LI Ning, GU Hai-bo, MA Li-na. Existence of solutions for boundary value problems of a class of nonlinear Caputo type sequential fractional differential equations on star graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 22-34.
[15] YANG Teng-fei, XU Chang-qing. Total colorings of 3-degenerate graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 61-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WU Peng-fei,MENG Xiang-zeng,LIU Jun-xiao,MA Feng-juan . Structure and content-based extraction of topical information from Web pages[J]. J4, 2006, 41(3): 131 -134 .
[2] MA Xin-guang. An integral-type operator from the Dirichlet  space to the Bloch-type space[J]. J4, 2012, 47(4): 66 -69 .
[3] XIA Meng-nan, DU Yong-ping, ZUO Ben-xin. Micro-blog opinion analysis based on syntactic dependency and feature combination[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 22 -30 .
[4] YAN Wei-rong, HONG Yu, ZHU Shan-shan, CHE Ting-ting, YAO Jian-min, ZHU Qiao-ming. Method of implicit discourse relation detection based on semantics scenario[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(11): 59 -67 .
[5] ZHU Meng-jun,JIANG Hong-xun*,XU Wei. Weibo moods and propagation factors based stock prices prediction[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 13 -25 .
[6] . The optimized algorithm of optical threedimensional 
measurement for phaseshift technique
[J]. J4, 2009, 44(6): 40 -45 .
[7] HU Li-xia, ZHANG Jian-hua. Lie higher derivable mappings of triangular algebras at zero points[J]. J4, 2013, 48(4): 5 -9 .
[8] LI Ying, SONG Wei-dong. On pseudo-umbilical timelike submanifold in a de Sitter space[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 64 -67 .
[9] WU Hong-bo,QIAO Xi-min, . The ∑Γfuzzy truth degree of formula relative to the finite theory in propositional logic system Ln[J]. J4, 2008, 43(6): 1 -8 .
[10] SUI Yunyun. The distribution of propositional truth degree in 5valued logic systems
associated with a nonlinear ordering true value set
[J]. J4, 2009, 44(1): 78 -82 .