JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (4): 49-54.doi: 10.6040/j.issn.1671-9352.0.2021.777
WANG Guo-xin, NIU Yu-jun
CLC Number:
[1] KANNO Y, MARTINS J A C, COSTA A P D. Second-order cone linear complementarity formulation of quasi-static incremental frictional contact problem[C] //NEITTAANMÄKI P, ROSSI T, KOROTOV S, et al. European Congress on Computational Methods in Applied Sciences and Engineering. Jyväskylä, Finland: [s.n.] , 2004: 1-7. [2] 李建宇,潘少华,张洪武. 解三维摩擦接触问题的一个二阶锥线性互补法[J]. 力学学报, 2009, 41(6):869-877. LI Jianyu, PAN Shaohua, ZHANG Hongwu. A second-order cone linear complementarity approach for three-dimensional frictional contact problems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(6):869-877. [3] 李建宇,张洪武,潘少华.正交各向异性摩擦接触分析的一个二阶锥线性互补法[J].固体力学学报,2010, 31(2):109-118. LI Jianyu, ZHANG Hongwu, PAN Shaohua. A second-order cone linear complementarity approach for contact problems with orthotropic friction law[J]. Chinese Journal of Solid Mechanics, 2010, 31(2):109-118. [4] ZHANG Hongwei, LI Jianyu, PAN Shaohua. New second-order cone linear complementarity formulation and semi-smooth Newton algorithm for finite element analysis of 3D frictional contact problem[J]. Computer Methods in Applied Mechanics & Engineering, 2011, 200(1/2/3/4):77-88. [5] CHEN X D, SUN D, SUN J. Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems[J]. Computational Optimization & Applications, 2003, 25(1/2/3):39-56. [6] FUKUSHIMA M, LUO Z Q, TSENG P. Smoothing functions for second-order-cone complementarity problems[J]. SIAM Journal on Optimization, 2002, 12(2):436-460. [7] HAYASHI S, YAMASHITA N, FUKUSHIMA M. A combined smoothing and regularization method for monotone second-order cone complementarity problems[J]. SIAM Journal on Optimization, 2005, 15(2):593-615. [8] CHEN Jieshan. Two classes of merit functions for the second-order cone complementarity problem[J]. Mathematical Methods of Operations Research, 2006, 64(3):495-519. [9] KANZOW C, FERENCZI I, FUKUSHIMA M. On the local convergence of semismooth Newton methods for linear and nonlinear second-order cone programs without strict complementarity[J]. SIAM Journal on Optimization, 2009, 20(1):297-320. [10] TANG Jingyong, ZHOU Jinchuan. A smoothing quasi-Newton method for solving general second-order cone complementarity problems[J]. Journal of Global Optimization, 2021, 80(3):1-24. [11] CHEN Pinbo, LIN Guihua, ZHU Xide, et al. Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets[J]. Journal of Global Optimization, 2021, 80(1):1-25. [12] LIN Guihua, LUO Meiju, ZHANG Dali, et al. Stochastic second-order cone complementarity problems: expected residual minimization formulation and its applications[J]. Mathematical Programming, 2017, 165(1):197-233. [13] LUO Meiju, ZHANG Yan, LI Yajie. Expected value and sample average approximation method for solving stochastic second-order cone complementarity problems[J]. Numerical Functional Analysis & Optimization, 2017, 38(7):911-925. [14] WANG Guoxin, ZHANG Jin, ZENG Bo, et al. Expected residual minimization formulation for a class of stochastic linear second-order cone complementarity problems[J]. European Journal of Operational Research, 2018, 265(2):437-447. [15] 王国欣. 随机线性二阶锥互补问题及其在最优潮流中的应用研究[D]. 上海: 上海大学, 2018: 41-62. WANG Guoxin. Studies on stochastic linear second-order cone complementarity problems and their applications in optimal power flow[D]. Shanghai: Shanghai University, 2018: 41-62. [16] CHEN X, FUKUSHIMA M. Expected residual minimization method for stochastic linear complementarity problems[J]. Mathematics of Operations Research, 2005, 30(4):1022-1038. [17] CHEN J S, PAN S H. A survey on SOC complementarity functions and solution methods for SOCPs and SOCCPs[J]. Pacific Journal of Optimization, 2012, 8(1):33-74. [18] FARAUT J, KORÁNYI A. Analysis on symmetric cones[M]. Oxford: Clarendon Press, 1994: 42-57. [19] MANGASARIAN O L, SOLODOV M V. Nonlinear complementarity as unconstrained and constrained minimization[J]. Mathematical Programming, 1993, 62(1/2/3):277-297. [20] TSENG P. Merit functions for semi-definite complementarity problems[J]. Mathematical Programming, 1998, 83(1):159-185. [21] KONG L, TUNCEL L, XIU N. Vector-valued implicit Lagrangian for symmetric cone complementarity problems[J]. Asia Pacific Journal of Operational Research, 2009, 26(2):199-233. [22] BILLINGSLEY P. Probability and measure[M]. New York: Wiley-Interscience, 1995: 206-220. |
[1] | WANG Zeng-zhen, LIU Hua-yong, ZHA Dong-dong. Progressive-iterative approximation by the triangular β-B curves with shape parameter [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 81-94. |
[2] | DAI Li-fang, LIANG Mao-lin, RAN Yan-ping. Solvability conditions for a class of tensor inverse eigenvalue problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 95-102. |
[3] | Hai-hui WANG,Lu-yao ZHAO,Ping LI. ε-language approximation of nondeterministic fuzzy finite automata [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 37-43. |
[4] | ZHANG Jie, ZHANG Yan-lan. Local rough set model based on similarity relation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 77-82. |
[5] | WANG Tao. Approximation properties of Lupas-King type operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 72-77. |
[6] | CHEN Dong-xiao, LI Jin-jin, LIN Rong-de, CHEN Ying-sheng. Rough approximation in multi-scale formal context [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 22-31. |
[7] | CHANG Fan-fan, MA Jian-min. Interval-set rough approximations based on a relation matrix [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 98-106. |
[8] | LI Xiao-chao. Upper(Lower)approximation based on congruence on free semilinear spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 15-19. |
[9] | ZHANG Hai-yang, MA Zhou-ming, YU Pei-qiu, LIN Meng-lei, LI Jin-jin. Incremental method for approximating sets of multi-granularity rough sets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 51-61. |
[10] | XIONG Xing-guo, LU Ling-xia. MV-algebra valued metric-based fuzzy rough sets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 81-89. |
[11] | CHEN Peng-yu, MA Wei-feng, Ahmed Abdelmonem. Existence of mild solutions for a class of fractional stochastic evolution equations with nonlocal initial conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 13-23. |
[12] | XIAO Wei-ming, WANG Gui-jun. Design and approximation of SISO three layers feedforward neural network based on Bernstein polynomials [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 55-61. |
[13] | ZHANG Ya-juan, LYU Yan. Approximation of stochastic vibration equations with variable damping [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 59-65. |
[14] | CHENG Lu, WEI Yue-chuan, LI An-hui, PAN Xiao-zhong. Multidimensional zero-correlation linear cryptanalysis on Midori [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 88-94. |
[15] | KANG Hai-yan, HUANG Yu-xuan, CHEN Chu-qiao. Enhancing privacy for geographic information based on video analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(1): 19-29. |
|