JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (4): 8-15.doi: 10.6040/j.issn.1671-9352.0.2021.778
REN Shi-xian1,2, AN Jing1*
CLC Number:
[1] COLTON D, PÄIVÄRINTA L, SYLVESTER J. The interior transmission problem[J]. Inverse Problems and Imaging, 2007, 1(1):13-28. [2] COLTON D, KRESS R. Inverse acoustic and electromagnetic scattering theory[M]. Berlin: Springer, 1998: 93. [3] CAKONI F, COLTON D, HADDAR H. On the determination of Dirichlet or transmission eigenvalues from far field data[J]. Comptes Rendus Mathematique, 2010, 348(7/8):379-383. [4] CAKONI F, COLTON D, MONK P. On the use of transmission eigenvalues to estimate the index of refraction from far field data[J]. Inverse Problems, 2007, 23(2):507-522. [5] PYNNE B P, SLEEMAN B D. The interior transmission problem and inverse scattering from inhomogeneous media[J]. SIAM Journal on Mathematical Analysis, 1991, 22(6):1755-1762. [6] PÄIVÄRINTA L, SYLVESTER J. Transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2008, 40(2):738-753. [7] CAKONI F, HADDAR H. On the existence of transmission eigenvalues in an inhomogeneous medium[J]. Applicable Analysis, 2009, 88(4):475-493. [8] CAKONI F, GINTIDES D, HADDAR H. The existence of an infinite discrete set of transmission eigenvalues[J]. SIAM Journal on Mathematical Analysis, 2010, 42(1):237-255. [9] JI X, SUN J G, TURNER T. Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues[J]. ACM Transactions on Mathematical Software(TOMS), 2012, 38(4):1-8. [10] SUN Jiguang. Iterative methods for transmission eigenvalues[J]. SIAM Journal on Numerical Analysis, 2011, 49(5):1860-1874. [11] CAKONI F, MONK P, SUN J G. Error analysis for the finite element approximation of transmission eigenvalues[J]. Computational Methods in Applied Mathematics, 2014, 14(4):419-427. [12] AN Jing, LI Huiyuan, ZHANG Zhimin. Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains[J]. Numerical Algorithms, 2020, 84(2):427-455. [13] REN Shixian, TAN Ting, AN Jing. An efficient spectral-Galerkin approximation based on dimension reduction scheme for transmission eigenvalues in polar geometries[J].Computers & Mathematics with Applications, 2020, 80(5):940-955. [14] LI Huiyuan, XU Yuan. Spectral approximation on the unit ball[J]. SIAM Journal on Numerical Analysis, 2014, 52(6):2647-2675. [15] AN Jing, LUO Zhendong. A high accuracy spectral method based on min/max principle for biharmonic eigenvalue problems on a spherical domain[J]. Journal of Mathematical Analysis and Applications, 2016, 439(1):385-395. [16] HAN Jiayu, YANG Yidu. An Hm-conforming spectral element method on multi-dimensional domain and its application to transmission eigenvalues[J]. Science China Mathematics, 2017, 60(8):1529-1542. |
[1] | WANG Feng-xia, XIONG Xiang-tuan. Quasi-boundary value regularization method for inhomogeneous sideways heat equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 74-80. |
[2] | CHEN Ya-wen, XIONG Xiang-tuan. Fractional Tikhonov method of a non-characteristic Cauchy problem for a parabolic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 120-126. |
[3] | DING Feng-xia, CHENG Hao. A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 18-24. |
[4] | ZHOU Jian-wei1, YANG Dan-ping2*. A posteriori error estimates for Legendre-Galerkin spectral methods in two dimensions [J]. J4, 2011, 46(11): 122-126. |
[5] | LU Yao1, LI De-sheng2, YANG Yang1. The Fourier spectral approximation for nonlinear SchrÖdinger equation [J]. J4, 2011, 46(1): 119-126. |
|