JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (6): 107-112.doi: 10.6040/j.issn.1671-9352.0.2022.540

Previous Articles     Next Articles

Entire solutions of differential-difference equation of Fermat type

Mingxin ZHAO(),Guirong SUN,Zhigang HUANG*()   

  1. School of Mathematics, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
  • Received:2022-10-19 Online:2023-06-20 Published:2023-05-23
  • Contact: Zhigang HUANG E-mail:zhaomingx06@163.com;hzg@mail.usts.edu.cn

Abstract:

By using Nevanlinna value distribution theory, this paper investigates the existence of transcendental entire solution with finite order of Fermat type differential-difference equation, and obtains one result.

Key words: Fermat type equation, transcendental function, differential-difference equation, entire solution

CLC Number: 

  • O174.5
1 YANG Chungchun , YI Hongxun . Uniqueness theory of meromorphic functions[M]. Beijing: Science Press, 2003.
2 GROSS F. Factorization of meromorphic functions and some open problems[C]//BUCKHOLTZ J D, SUFFRIDGE T J. Complex Analysis: Proceedings of the Conference Held at the University of Kentucky. Berlin: Springer, 1977: 51-67.
3 BAKER I N . On a class of meromorphic functions[J]. Proc Am Math Soc, 1966, 17 (4): 819- 822.
doi: 10.1090/S0002-9939-1966-0197732-X
4 YANG Chungchun . A generalization of a theorem of P.Montel on entire functions[J]. Proc Amer Math Soc, 1970, 26 (2): 332- 334.
doi: 10.1090/S0002-9939-1970-0264080-X
5 TANG Jiafeng , LIAO Liangwen . The transcendental meromorphic solutions of a certain type of nonlinear differential equations[J]. Math Anal Appl, 2007, 334 (1): 517- 527.
doi: 10.1016/j.jmaa.2006.12.075
6 LIU Kai , CAO Tingbin , CAO Hongzhe . Entire solutions of Fermat type differential-difference equations[J]. Arch Math, 2012, 99 (2): 147- 155.
doi: 10.1007/s00013-012-0408-9
7 CHEN Minfeng , GAO Zongsheng , DU Yunfei . Existence of entire solutions of some non-linear differential-difference equations[J]. Journal of Inequalities and Applications, 2017, 2017 (90): 1- 17.
8 LYU Feng , HAN Qi . On the Fermat-type equation f3(z)+f3(z+c)=1[J]. Aequations Math, 2016, 91 (1): 129- 136.
9 HU Peichu , WANG Wenbo , WU Linlin . Entire solutions of differential-difference equations of Fermat type[J]. Bull Korean Math Soc, 2022, 59 (1): 83- 99.
10 LIU Kai , MA Lei , ZHAI Xiaoyang . The generalized Fermat type difference equations[J]. Bull Korean Math Soc, 2018, 55 (6): 1845- 1858.
11 CHEN Junfan , LIN Shuqing . On the existence of solutions of Fermat type differential-difference equations[J]. Bull Korean Math Soc, 2021, 58 (4): 983- 1002.
12 WANG Hua , XU Hongyan , TU Jin . The existence and forms of solutions for some Fermat differential-difference equations[J]. Aims Mathematics, 2020, 5 (1): 687- 700.
13 扈培础, 吴琳琳. 关于Fermat型函数方程的问题[J]. 山东大学学报(理学版), 2021, 56 (10): 23- 37.
HU Peichu , WU Linlin . Topics in Fermat type functional equations[J]. Journal of Shandong University (Natural Science), 2021, 56 (10): 23- 37.
14 WANG Qiongyan . Admissible meromorphic solutions of algebraic differential-difference equations[J]. Math Meth Appl Sci, 2019, 42 (9): 3044- 3053.
doi: 10.1002/mma.5564
15 CLUNIE J . On integral and meromorphic functions[J]. Lond Math Soc, 1962, 37 (1): 17- 27.
16 CHIANG Yikman , FENG Shaoji . On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane[J]. The Ramanujan Journal, 2008, 16 (1): 105- 129.
doi: 10.1007/s11139-007-9101-1
[1] GAO Zhen-guang. Entire solutions of two types of nonlinear differential-difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 34-44.
[2] YANG Qi. Transcendental solutions of two types of systems of complex differential-difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 25-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[2] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[3] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[4] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[5] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[6] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[7] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[8] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101 -106 .
[9] LIU Yan-ping, WU Qun-ying. Almost sure limit theorems for the maximum of Gaussian sequences#br# with optimized weight[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 50 -53 .
[10] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .