JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 118-126.doi: 10.6040/j.issn.1671-9352.0.2022.597
Minglei FANG(),Defeng DING*(),Ming WANG,Yuting SHENG
CLC Number:
1 |
LEVENBERG K . A method for the solution of certain non-linear problems in least squares[J]. Quarterly of Applied Mathematics, 1944, 2 (2): 164- 168.
doi: 10.1090/qam/10666 |
2 |
MARQUARDT D W . An algorithm for least-squares estimation of nonlinear parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11 (2): 431- 441.
doi: 10.1137/0111030 |
3 | YAMASHITA N , FUKUSHIMA M . On the rate of convergence of the Levenberg-Marquardt method[M]. New York: Springer, 2001: 239- 249. |
4 |
FAN J Y . The modified Levenberg-Marquardt method for nonlinear equations with cubic convergence[J]. Mathematics of Computation, 2012, 81 (277): 447- 466.
doi: 10.1090/S0025-5718-2011-02496-8 |
5 |
FAN J Y . A Shamanskii-like Levenberg-Marquardt method for nonlinear equations[J]. Computational Optimization and Applications, 2013, 56 (1): 63- 80.
doi: 10.1007/s10589-013-9549-4 |
6 |
ZHOU W . On the convergence of the modified Levenberg-Marquardt method with a nonmonotone second order Armijo type line search[J]. Journal of Computational and Applied Mathematics, 2013, 239, 152- 161.
doi: 10.1016/j.cam.2012.09.025 |
7 |
AMINI K , ROSTAMI F . Three-steps modified Levenberg-Marquardt method with a new line search for systems of nonlinear equations[J]. Journal of Computational and Applied Mathematics, 2016, 300, 30- 42.
doi: 10.1016/j.cam.2015.12.013 |
8 |
CHEN L , MA Y F . Shamanskii-like Levenberg-Marquardt method with a new line search for systems of nonlinear equations[J]. Journal of Systems Science and Complexity, 2020, 33 (5): 1694- 1707.
doi: 10.1007/s11424-020-9043-x |
9 |
AMINI K , ROSTAMI F , CARISTI G . An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations[J]. Optimization, 2018, 67 (5): 637- 650.
doi: 10.1080/02331934.2018.1435655 |
10 |
MA Changfeng , JIANG Lihua . Some research on Levenberg-Marquardt method for the nonlinear equations[J]. Applied Mathematics and Computation, 2007, 184 (2): 1032- 1040.
doi: 10.1016/j.amc.2006.07.004 |
11 |
DENNIS J E , MORÉ J J . A characterization of super linear convergence and its application to quasi-Newton methods[J]. Mathematics of Computation, 1974, 28 (126): 549- 560.
doi: 10.1090/S0025-5718-1974-0343581-1 |
12 | WU Z X , ZHOU T , LI L , et al. A new modified efficient Levenberg-Marquardt method for solving systems of nonlinear equations[J]. Mathematical Problems in Engineering, 2021, 2021, 1- 11. |
13 | BEHLING R , IUSEM A . The effect of calmness on the solution set of systems of nonlinear equations[J]. Mathematical Programming, 2013, 137 (1): 155- 165. |
14 |
MORÉ J J , GARBOW B S , HILLSTROM K E . Testing unconstrained optimization software[J]. ACM Transactions on Mathematical Software, 1981, 7 (1): 17- 41.
doi: 10.1145/355934.355936 |
15 |
SCHNABEL R B , FRANK P D . Tensor methods for nonlinear equations[J]. SIAM Journal on Numerical Analysis, 1984, 21 (5): 815- 843.
doi: 10.1137/0721054 |
[1] | WANG Song-hua, LUO Dan, LI Yong. A class of newly modified WYL conjugate gradient algorithms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 87-95. |
[2] | LIN Sui-hua. A modified FR spectral conjugate gradient method with Wolfe line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 6-12. |
[3] | ZHENG Xiu-yun, SHI Jia-rong. A globally convergent conjugate gradient method with Armijo line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 98-101. |
[4] | WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16-23. |
[5] | WANG Kai-rong, WANG Shu-min. The modified hybrid conjugates gradient methods with sufficient descent property [J]. J4, 2013, 48(09): 78-84. |
[6] | FENG Lin1,2, DUAN Fu-jian1, HE Wen-long1. A filter non-monotone trust region algorithm with a simple quadratic model [J]. J4, 2012, 47(5): 108-114. |
[7] | LI Min, CHEN Yu, QU Ai-ping. A sufficient descent DY conjugate gradient method and its global convergence [J]. J4, 2011, 46(7): 101-105. |
[8] | CHENG Li-qing1,2, SHI Qiao-lian2. A new hybrid conjugate gradient method [J]. J4, 2010, 45(6): 81-85. |
[9] | CHENG Li-qing. The global convergence of a class of conjugate gradient methods [J]. J4, 2010, 45(5): 101-105. |
[10] | WANG Kai-rong, CAO Wei, WANG Yin-he. A spectral CD conjugate gradient method with Armijo-type line search [J]. J4, 2010, 45(11): 104-108. |
[11] | . A new class of memory gradient methods with Wolfe line search [J]. J4, 2009, 44(7): 33-37. |
|