JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 18-25.doi: 10.6040/j.issn.1671-9352.0.2022.318

Previous Articles     Next Articles

Recollements of Gorenstein flat cotorsion modules over triangular matrix rings

Xianhong YANG(),Guoliang TANG,Zhenxing DI*()   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2022-05-30 Online:2023-08-20 Published:2023-07-28
  • Contact: Zhenxing DI E-mail:yxh210805@163.com;dizhenxing19841111@126.com

Abstract:

Let $\mathit{\boldsymbol{T}} = \left( {\begin{array}{*{20}{c}} A&0\ U&B \end{array}} \right)$ be a triangular matrix ring, where A and B are rings and U is a (B, A)-bimodule. The equivalent characterization of Gorenstein flat cotorsion modules in the category of left T-modules is given. With the help of the above result, it is proved that when ring A and bimodule U satisfy some conditions, there is a left recollement of the stable category of Gorenstein flat cotorsion T-module category. Under stronger conditions, a recollement of this stable category is further obtained.

Key words: triangular matrix ring, Gorenstein flat cotorsion module, recollement of a triangulated category

CLC Number: 

  • O153.3
1 BEILINSON A A , BERNSTEIN J , DELIGNE P . Faisceaux pervers, analysis and topology on singular spaces[M]. Paris: France Society Mathematical, 1982.
2 KÖNIG S . Tilting complexes, perpendicular categories and recollements of derived module categories of rings[J]. Journal of Pure and Applied Algebra, 1991, 73 (3): 211- 232.
doi: 10.1016/0022-4049(91)90029-2
3 AUSLANDER M , REITEN I . Representation theory of Artin algebras[M]. Cambridge: Cambridge University Press, 1997.
4 BLECHER D P , MERDY C L . Operator algebras and their modules: an operator space approach[M]. Oxford: Oxford University Press, 2004.
5 ZHANG Pu . Gorenstein-projective modules and symmetric recollements[J]. Journal of Algebra, 2013, 388, 65- 80.
doi: 10.1016/j.jalgebra.2013.05.008
6 MAO Lixin . Gorenstein flat modules and dimensions over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2020, 224 (4): 106207.
doi: 10.1016/j.jpaa.2019.106207
7 ENOCHS E E , JENDA O . Relative homological algebra[M]. Berlin: De Gruyter, 2000.
8 GREEN E L . On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematical, 1982, 100 (1): 123- 138.
doi: 10.2140/pjm.1982.100.123
9 FOSSUM R M , GRIFFITH P A , REITEN I . Trivial extensions of abelian categories[M]. New York: Springer-Verlag, 1975.
10 MAO Lixin . Cotorsion pairs and approximation classes over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2020, 224 (6): 106271.
doi: 10.1016/j.jpaa.2019.106271
11 ŠAROCH J , ŠŤOVÍČEK J . Singular compactness and definability for Σ-cotorsion and Gorenstein modules[J]. Selecta Mathematical, New Series, 2020, 26 (2): 23.
doi: 10.1007/s00029-020-0543-2
12 ŠŤOVÍČEKK J. On purity and applications to coderived and singularity categories[EB/OL]. [2021-12-30]http://arXiv.org/abs/1412.161501.
13 HAPPEL D . Triangulated categories in the representation theory of finite-dimensional algebras[M]. Cambridge: Cambridge University Press, 1988.
14 HOLM H . Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189 (1/2/3): 167- 193.
[1] YANG Yin-yin, ZHANG Cui-ping. Gorenstein FP-injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 38-44.
[2] TANG Guo-liang, CHEN Ling-qiao, DI Zhen-xing. Equivalent characterizations of strong right mininjective, semiperfect, right PF and clean triangular matrix rings of order n [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 8-13.
[3] NIU Shao-hua, YANG Gang. n-Gorenstein projective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(10): 44-49.
[4] WU De-jun, ZHOU Hui. A characterization of Gorenstein FP-injective modules over triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 86-93.
[5] SUN Bo, YIN Yu-jie, DI Zhen-xing. Finitely embedded modules over triangular matrix rings of order n [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 46-53.
[6] CHEN Ling-qiao, TANG Gou-liang, DI Zhen-xing. Equivalent characterization of(strong)Kasch triangular matrix ring of order n [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 25-30.
[7] DI Zhen-xing, LI Xiao-man. Absolutely clean modules and Gorenstein AC flat modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 81-88.
[8] YANG Li-na, WANG Yao, REN Yan-li. Some new results of skew triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 49-55.
[9] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[10] MA Guang-lin, WANG Yao, REN Yan-li. Some extensions of T-nilpotent rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 68-73.
[11] ZHU Rong-min, WANG Zhan-ping. Gorenstein projective modules and dimensions over triangular matrix ring of order n [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 85-92.
[12] HUANG Shu-liang. Several results on derivations of formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 43-46.
[13] WANG Wen-kang. On central linear McCoy rings [J]. J4, 2013, 48(12): 6-13.
[14] YANG Shi-zhou1, SONG Xue-mei2. Quasi-McCoy rings relative to a monoid [J]. J4, 2010, 45(8): 47-52.
[15] WANG Wen-kang. On weaker skew-Armendariz rings [J]. J4, 2010, 45(10): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[2] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[3] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[4] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[5] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[6] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[7] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[8] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[9] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[10] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .