JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 38-42.doi: 10.6040/j.issn.1671-9352.0.2022.630

Previous Articles     Next Articles

Gorenstein cotorsion modules of Noetherian rings

Yadong LUO(),Gang YANG*()   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2022-11-28 Online:2023-08-20 Published:2023-07-28
  • Contact: Gang YANG E-mail:1264054907@qq.com;yanggang@mail.lzjtu.cn

Abstract:

Let R be a left Noetherian ring. It is proved that if the Gorenstein flat cover of any injective precover of a left R-module M is injective, then the Gorenstein flat cover of M is injective if and only if every injective f : EM of M is surjective and Ker f is Gorenstein cotorsion.

Key words: injective modules, Gorenstein flat modules, Gorenstein cotorsion modules, strongly Gorenstein cotorsion modules

CLC Number: 

  • O154.2
1 ENOCHS E E , JENDA O M G , TORRECILLAS B . Gorenstein flat modules[J]. Journal of Nanjing University Mathematical Biquarterly, 1993, 10 (1): 1- 9.
2 ENOCHS E E , JENDA O M G . The existence of Gorenstein flat covers[J]. Math Scand, 2004, 94 (1): 46- 62.
doi: 10.7146/math.scand.a-14429
3 YANG Gang , LIU Zhongkui . Gorenstein flat covers over GF-closed ring[J]. Communications in Algebra, 2012, 40 (5): 1632- 1640.
doi: 10.1080/00927872.2011.553644
4 LEI Ruiping , MENG Fanyun . Notes on Gorenstein cotorsion modules[J]. Mathematical Notes, 2014, 96 (5): 716- 731.
5 SAROCH J , STOVICEK J . Singular compactness and definability for Σ-cotorsion and Gorenstein modules[J]. Selecta Mathematica-New Series, 2020, 23, 2- 40.
6 ENOCHS E E . Injective and flat covers, envelopes and resolvents[J]. Israel Journal of Mathematics, 1981, 39, 189- 209.
doi: 10.1007/BF02760849
7 ENOCHS E E, JENDA O M G. Relative Homological Algebra[M]//Expositions in Mathematics, Vol 30. New York: Walter de Gruyter, 2000.
8 IWANAGA Y . On rings with finite self-injective dimension Ⅱ[J]. Tsukuba Journal of Mathematics, 1980, 4, 107- 113.
9 DING Nanqing , CHEN Jianlong . The flat dimensions of injective modules[J]. Manuscripta Mathematica, 1993, 78, 165- 177.
doi: 10.1007/BF02599307
10 ENOCHS E E , JENDA O M G . Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220, 611- 633.
11 HUANG Zhaoyong . Gorenstein injective and strongly cotorsion modules[J]. Israel Journal of Mathematics, 2013, 198 (1): 215- 228.
doi: 10.1007/s11856-013-0033-8
12 ENOCHS E E , LOPEZ-RAMOS J A . Gorenstein flat modules[M]. Now York: Nova Science Publishers, 2001.
13 ENOCHS E E , HUANG Zhaoyong . Injective envelopes and (Gorenstein) flat covers[J]. Algebras and Representation Theory, 2012, 15, 1131- 1145.
14 HOLM H . Gorenstein homological dimensions[J]. Journal of Pure and Applied Algebra, 2004, 189, 167- 193.
[1] GUO Hui-ying, ZHANG Cui-ping. Ext-strong Ding projective modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 31-36.
[2] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[3] WANG Xin-xin. Strongly Ω-Gorenstein injective modules [J]. J4, 2013, 48(2): 23-26.
[4] ZHANG Wan-ru. Related power comparability of quasi projective modules and quasi injective modules [J]. J4, 2012, 47(8): 68-72.
[5] YIN Xiao-bin1, HUANG Xiao-lin1, WANG Kai-yun2. Endomorphism rings of quasi AP-injective modules [J]. J4, 2010, 45(6): 31-34.
[6] ZHU Zhan-min. Finitely quasi-injective modules [J]. J4, 2010, 45(10): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[3] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[4] Ming-Chit Liu. THE TWO GOLDBACH CONJECTURES[J]. J4, 2013, 48(2): 1 -14 .
[5] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[6] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16 -23 .
[7] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[8] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[9] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[10] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .