JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 82-91.doi: 10.6040/j.issn.1671-9352.0.2023.034
Previous Articles Next Articles
CLC Number:
1 | 白占兵. 分数阶微分方程边值问题理论及应用[M]. 北京: 中国科学技术出版社, 2013. |
BAI Zhanbing . Theory and application of fractional differential equation boundary value problems[M]. Beijing: China Science and Technology Press, 2013. | |
2 | XIAO Y B , LIU J Z , ALKHATHLAN A . Informatisation of educational reform based on fractional differential equations[J]. Applied Mathematics and Nonlinear Sciences, 2021, 7 (2): 79- 90. |
3 | SUN Zhizhong , GAO Guanghua . Fractional differential equations: finite difference methods[M]. Berlin: De Gruyter, 2020. |
4 | PODLUBNY I . Fractional differential equations[M]. New York: Academic Press, 1999. |
5 | BASHIR A , JOHNNY L H , RODICA L . Boundary value problems for fractional differential equations and systems[M]. Singapore: World Scientific Publishing Company, 2021. |
6 |
LIU Xiping , JIA Mei . A class of iterative functional fractional differential equation on infinite interval[J]. Applied Mathematics Letters, 2023, 136, 108473.
doi: 10.1016/j.aml.2022.108473 |
7 |
SU Xinwei . Boundary value problem for a coupled system of nonlinear fractional differential equations[J]. Applied Mathematics Letters, 2009, 22 (1): 64- 69.
doi: 10.1016/j.aml.2008.03.001 |
8 |
LIU Xiping , JIA Mei , GE Weigao . The method of lower and upper solutions for mixed fractional four-point boundary value problem with p-Laplacian operator[J]. Applied Mathematics Letters, 2017, 65, 56- 62.
doi: 10.1016/j.aml.2016.10.001 |
9 | KHALIL R , AL HORANI M , YOUSEF A , et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264 (5): 65- 70. |
10 | ABDELJAWAD T . On conformable fractional calculus[J]. Journal of Computational and Applied Mathematics, 2015, 279 (1): 57- 66. |
11 |
董晓玉, 白占兵, 张伟. 具有适型分数阶导数的非线性特征值问题的正解[J]. 山东科技大学学报(自然科学版), 2016, 35 (3): 85- 91.
doi: 10.16452/j.cnki.sdkjzk.2016.03.005 |
DONG Xiaoyu , BAI Zhanbing , ZHANG Wei . Positive solutions for nonlinear eigenvalue problems with conformable fractional differential derivative[J]. Journal of Shandong University of Science and Technology (Science Edition), 2016, 35 (3): 85- 91.
doi: 10.16452/j.cnki.sdkjzk.2016.03.005 |
|
12 |
TAJADODI H , KHAN Z A , IRSHAD A U , et al. Exact solutions of conformable fractional differential equations[J]. Results in Physics, 2021, 22, 103916.
doi: 10.1016/j.rinp.2021.103916 |
13 | HADDOUCHI F . Existence of positive solutions for a class of conformable fractional differential equations with parameterized integral boundary conditions[J]. Kyungpook Mathematical Journal, 2021, 61 (1): 139- 153. |
14 | BENDOUA B , CABADA A , HAMMOUDI A . Existence results for systems of conformable fractional differential equations[J]. Archivum Mathematicum, 2019, 55 (2): 69- 82. |
15 |
ALLAHVERDIEV B P , HUNA H , YALCINKAYA Y . Conformable fractional Sturm-Liouville equation[J]. Mathematical Methods in the Applied Sciences, 2019, 42 (10): 3508- 3526.
doi: 10.1002/mma.5595 |
16 |
LI M M , WANG J R , O'REGAN D . Existence and Ulam's stability for conformable fractional differential equations with constant coefficients[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (4): 1791- 1812.
doi: 10.1007/s40840-017-0576-7 |
17 |
CASTRO L P , SILVA A S . On the solution and Ulam-Hyers-Rassias stability of a Caputo fractional boundary value problem[J]. Mathematical Biosciences and Engineering, 2022, 19 (11): 10809- 10825.
doi: 10.3934/mbe.2022505 |
18 | ALSADI W , WEI Z C , MOROZ I , et al. Existence and stability theories for a coupled system involving p-Laplacian operator of a nonlinear Atangana-Baleanu fractional differential equations[J]. Fractals-Complex Geometry Patterns and Scaling in Nature and Society, 2022, 30 (1): 1793- 6543. |
19 |
ALI Z . On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (5): 2681- 2699.
doi: 10.1007/s40840-018-0625-x |
20 | SOUSA JVD , DE OLIVEIRA EC . Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation[J]. Applied Mathematics Letters, 2018, 81, 50- 56. |
21 | AGARWAL R , HRISTOVA S , O'REGAN D . Ulam type stability for non-instantaneous impulsive Caputo fractional differential equations with finite state dependent delay[J]. Georgian Mathematical Journal, 2021, 28 (4): 499- 517. |
22 | WAN Fan , LIU Xiping , JIA Mei . Ulam-Hyers stability for conformable fractional impulsive integro-differential equations with the antiperiodic boundary conditions[J]. AIMS Mathematics, 2022, 7 (4): 6066- 6083. |
23 | LIU Xiping , JIA Mei . On the solvability of fractional differential equation model involving the p-Laplacian operator[J]. Computers and Mathematics with Applications, 2012, 64 (10): 3267- 3275. |
[1] | . Existence of ground states for linear coupled systems of lower critical Choquard type [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 62-67. |
[2] | SONG Jun-qiu, JIA Mei, LIU Xi-ping, LI Lin. Existence of positive solutions for fractional nonhomogeneous boundary value problem with p-Laplacian [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 57-66. |
[3] | WU Cheng-ming. Existence of positive periodic solutions for second order singular coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 81-88. |
[4] | QI Wei-qing, JI Pei-sheng, LU Hai-ning. General solution and stability of bi-cubic functional equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 60-66. |
[5] | JI Pei-sheng1, QI Wei-qing2, LIU Rong-rong1. On the Hyers-Ulam Stability of n-cocycles [J]. J4, 2013, 48(4): 1-4. |
[6] | SUN Tao1, GAO Fei1, DUAN Xiao-dong2. The existence of positive solutions of nonlocal boundary value problems for the fourth order [J]. J4, 2010, 45(12): 62-66. |
|