JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (9): 39-50.doi: 10.6040/j.issn.1671-9352.0.2022.660
Previous Articles Next Articles
Feixu LI1(),Fei YAN1,*(),Binlin CHENG2,Liqiang ZHANG1
CLC Number:
1 | 白若琛, 庞成鑫, 贾佳, 等. 多协议融合LPWAN能源物联网云平台的设计[J]. 计算机科学, 2019, 46 (B06): 589- 592. |
BAI Ruoshen , PANG Chengxin , JIA Jia , et al. Design of cloud platform for energy internet of things based on LPWAN multi protocol[J]. Computer Science, 2019, 46 (B06): 589- 592. | |
2 | PASQUA E. LPWAN emerging as fastest growing IoT communication technology-1.1 billion IoT connections expected by 2023, LoRa and NB-IoT the current market leaders-IoT Analytics[R]. IoT Analytics, 2018 September: 27. |
3 | 吴进, 赵新亮, 赵隽. LoRa物联网技术的调制解调[J]. 计算机工程与设计, 2019, 40 (3): 617- 622. |
WU Jin , ZHAO Xinliang , ZHAO Jun . Modulation and demodulation of LoRa Internet of Things technology[J]. Computer Engineering and Design, 2019, 40 (3): 617- 622. | |
4 | 于颖超, 陈左宁, 甘水滔, 等. 嵌入式设备固件安全分析技术研究[J]. 计算机学报, 2021, 44 (5): 859- 881. |
YU Yingchao , CHEN Zuoning , GAN Shuitao , et al. Research on the technologies of security analysis technologies on the embedded device firmware[J]. Chinese Journal of Computers, 2021, 44 (5): 859- 881. | |
5 | ZHENG Y W, DAVANIAN A, YIN H, et al. FIRM-AFL: high-throughput greybox fuzzing of IoT firmware via augmented process emulation[C]//Proceedings of the 28th USENIX Conference on Security Symposium. New York: ACM, 2019: 1099-1114. |
6 | CHEN Jiongyi, DIAO Wenrui, ZHAO Qingchuan, et al. IoT fuzzer: discovering memory corruptions in IoT through app-based fuzzing[C]//Proceedings 2018 Network and Distributed System Security Symposium. Reston: Internet Society, 2018: 18-21. |
7 | SCHARNOWSKI T, BARS N, SCHLOEGEL M, et al. Fuzzware: using precise MMIO modeling for effective firmware fuzzing[C]//31st USENIX Security Symposium (USENIX Security 22). Boston: USENIX Association. 2022: 1239-1256. |
8 | ZHOU Wei, GUAN Le, LIU Peng, et al. Automatic firmware emulation through invalidity-guided knowledge inference (extended version)[EB/OL]. 2021: arXiv: 2107.07759. https://arxiv.org/abs/2107.07759. |
9 | FENG Bo, MERA A, LU Long. P2IM: scalable and hardware-independent firmware testing via automatic peripheral interface modeling[C]//Proceedings of the 29th USENIX Conference on Security Symposium, New York: ACM, 2020: 1237-1254. |
10 | REDINI N, MACHIRY A, WANG R Y, et al. Karonte: detecting insecure multi-binary interactions in embedded firmware[C]//2020 IEEE Symposium on Security and Privacy (SP). San Francisco: IEEE, 2020: 1544-1561. |
11 | REDINI N, MACHIRY A, DAS D, et al. BootStomp: on the security of bootloaders in mobile devices[C]//Proceedings of the 26th USENIX Conference on Security Symposium. New York: ACM, 2017: 781-798. |
12 | DAVIDSON D, MOENCH B, RISTENPART T, et al. FIE on firmware: finding vulnerabilities in embedded systems using symbolic execution[C]//22nd USENIX Security Symposium (USENIX Security 13), Boston: USENIX Association. 2013: 463-478. |
13 | SHOSHITAISHVILI Y, WANG R Y, SALLS C, et al. SOK: (state of) the art of war: offensive techniques in binary analysis[C]//2016 IEEE Symposium on Security and Privacy (SP). San Jose: IEEE, 2016: 138-157. |
14 | SILVA J, RODRIGUES J, ALBERTI A, et al. LoRaWAN—a low power WAN protocol for Internet of Things: a review and opportunities[C]//2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, Croatia: IEEE, 2017: 1-6. |
15 | CHEN D D, EGELE M, WOO M, et al. Towards automated dynamic analysis for linux-based embedded firmware[C]//Proceedings 2016 Network and Distributed System Security Symposium. San Diego: Internet Society, 2016: 1-16. |
16 | KIM M, KIM D, KIM E, et al. FirmAE: towards large-scale emulation of IoT firmware for dynamic analysis[C]//Annual Computer Security Applications Conference. New York: ACM, 2020: 733-745. |
17 | 于颖超, 甘水滔, 邱俊洋, 等. 二进制代码相似度分析及在嵌入式设备固件漏洞搜索中的应用[J]. 软件学报, 2022, 33 (11): 4137- 4172. |
YU Yingchao , GAN Shuitao , QIU Junyang , et al. Binary code similarity analysis and its applications on embedded device firmware vulnerability search[J]. Journal of Software, 2022, 33 (11): 4137- 4172. | |
18 | 杨毅宇, 周威, 赵尚儒, 等. 物联网安全研究综述: 威胁、检测与防御[J]. 通信学报, 2021, 42 (8): 188- 205. |
YANG Y Y , ZHOU W , ZHAO S R , et al. Survey of IoT security research: threats, detection and defense[J]. Journal on Communications, 2021, 42 (8): 188- 205. | |
19 | SHOSHITAISHVILI Y, WANG Ruoyu, HAUSER C, et al. Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware[C]. NDSS, 2015, 1: 1.1-8.1. |
20 | HERNANDEZ G, FOWZE F, TIAN D, et al. FirmUSB: vetting USB device firmware using domain informed symbolic execution[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 2245-2262. |
21 | WEN Haohuang, LIN Zhiqiang, ZHANG Yinqian. FirmXray: detecting bluetooth link layer vulnerabilities from bare-metal firmware[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 167-180. |
22 | FOWZE F , TIAN D , HERNANDEZ G , et al. ProXray: protocol model learning and guided firmware analysis[J]. IEEE Transactions on Software Engineering, 2021, 47 (9): 1907- 1928. |
23 | CADAR C, DUNBAR D, ENGLER D R. KLEE: unassisted and automatic generation of high-coverage tests for complex systems programs[C]. 8th USENIX Symposium on Operating Systems Design and Implementation. New York: ACM, 2008: 209-224. |
24 | CADAR C , GANESH V , PAWLOWSKI P M , et al. EXE: automatically generating inputs of death[J]. ACM Transactions on Information and System Security, 2008, 12 (2): 1- 38. |
25 | CHA S K, AVGERINOS T, REBERT A, et al. Unleashing mayhem on binary code[C]//2012 IEEE Symposium on Security and Privacy. San Francisco: IEEE, 2012: 380-394. |
26 | CHIPOUNOV V , KUZNETSOV V , CANDEA G . S2E: a platform for in-vivo multi-path analysis of software systems[J]. ACM Sigplan Notices, 2011, 46 (3): 265- 278. |
27 | GODEFROID P , LEVIN M Y , MOLNAR D . SAGE: whitebox fuzzing for security testing[J]. Communications of the ACM, 2012, 55 (3): 40- 44. |
28 | STEPHENS N, GROSEN J, SALLS C, et al. Driller: augmenting fuzzing through selective symbolic execution[C]//Proceedings 2016 Network and Distributed System Security Symposium. Reston: Internet Society, 2016: 1-16. |
29 | BUTUN I , PEREIRA N , GIDLUND M . Security risk analysis of LoRaWAN and future directions[J]. Future Internet, 2018, 11 (1): 3. |
30 | MILLER R. Lora security building a secure lora solution[R]. MWR Labs Whitepaper, 2016: 1-18. |
31 | ELDEFRAWY M , BUTUN I , PEREIRA N , et al. Formal security analysis of LoRaWAN[J]. Computer Networks, 2019, 148, 328- 339. |
32 | BUTUN I, PEREIRA N, GIDLUND M. Analysis of LoRaWAN v1.1 security: research paper[C]//Proceedings of the 4th ACM MobiHoc Workshop on Experiences with the Design and Implementation of Smart Objects. New York: ACM, 2018: 1-6. |
33 | DÖNMEZ T C M , NIGUSSIE E . Security of LoRaWAN v1.1 in backward compatibility scenarios[J]. Procedia Computer Science, 2018, 134, 51- 58. |
34 | RAMOS D A, ENGLER D. Under-constrained symbolic execution: correctness checking for real code[C]//Proceedings of the 24th USENIX Conference on Security Symposium. New York: ACM, 2015: 49-64. |
35 | ENGLER D, DUNBAR D. Under-constrained execution: making automatic code destruction easy and scalable[C]//Proceedings of the 2007 International Symposium on Software Testing and Analysis. New York: ACM, 2007: 1-4. |
36 | MCCI Catena. MCCI LoRaWAN LMIC Library[EB/OL]. [2022-08-17]. https://github.com/mcci-catena/arduino-lmic. |
37 | YANG Xueying. LoRaWAN: vulnerability analysis and practical exploitation[D]. Delft: Delft University of Technology, 2017. |
38 | TOMASIN S, ZULIAN S, VANGELISTA L. Security analysis of LoRaWAN join procedure for Internet of Things networks[C]//2017 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). San Francisco: IEEE, 2017: 1-6. |
39 | SIMDNE Z. Security threat analysis and countermeasures for lorawan join procedure[EB/OL]. [2022-09-02]. https://thesis.unipd.it/bitstream/20.500.12608/27531/1/zulian_simone_tesi. |
40 | YEGIN A, DELCLEF J, LE GOURRIEREC M. Technical recommendations for preventing state synchronization issues around LoRaWAN 1.0. x join procedure[EB/OL]. https://resources.lora-alliance.org/home/technical-recommendations-for-preventing-state-synchronization-issues-around-lorawan-1-0-x-join-procedure. |
41 | YEGIN A, SELLER O. LoRaWAN L2 1.0.4 specification (TS001-1.0.4)[EB/OL]. https://lora-alliance.org/resource_hub/lorawan-104-specification-package/. |
[1] | Bo ZHAO,Jing QIN,Jinlu LIU. An encryption scheme supporting wildcard and fuzzy search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 28-38. |
[2] | Jiao LYU,Xi ZHANG,Jing QIN. Time-controlled designated tester proxy re-encryption with keyword search scheme [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 16-27. |
[3] | Xiuzhen CHENG,Weifeng LYU,Minghui XU,Runyu PAN,Dongxiao YU,Chenxu WANG,Yong YU,Xue XIAO. Meta computing: a new computing paradigm under zero trust [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(9): 1-15. |
[4] | Zhao-xia WU,Yi WANG. A safe auction algorithm for heterogeneous spectrum based on Paillier homomorphism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 23-27. |
[5] | Chao ZHANG,Ying LIANG,Hao-shan FANG. Social network information recommendation method of supporting privacy protection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 9-18. |
[6] | Ying LI,Jun HU. Hierarchical trusted cryptography service framework based on distributed message drive [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 19-27. |
[7] | Jun HU,Zi-peng DIAO. vTCM: a virtualized trusted cryptography module based on the virtualization of physical trusted computing environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(7): 77-88. |
[8] | Juan QU,Yu-ming FENG,Yan-ping LI,Li LI. An anonymous and provably remote user authentication protocol using extended chaotic maps for multi-server system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 44-51. |
[9] | Jia XU,Peng JIANG. A survey of visual saliency and salient object detection methods [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 28-37. |
[10] | Fu-sheng WU,Huan-guo ZHANG,Ming-tao NI,Jun WANG. Security analysis model of behavior based on cryptographic protocols implement at source code level [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 18-27. |
[11] | Xiao-jie XIE,Ying LIANG,Xiang-xiang DONG. Sensitive attribute iterative inference method for social network users [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 10-17, 27. |
[12] | Tian-tian CHANG,Xing-shu CHEN,Yong-gang LUO,Xiao LAN. Security domain-based data isolation protection framework for Hive [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 1-9. |
[13] | Ze-nan WU,Li-qin TIAN,Zhi-gang WANG. A user behavior trust evaluation combined with sliding window and recommended trust [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 53-59. |
[14] | Yao-yao DU,Ping PAN,Jin-hua LINGHU. Evaluation method of information system grade protection based on DIT [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(1): 47-52. |
[15] | Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51-55. |
|