JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 20-30.doi: 10.6040/j.issn.1671-9352.0.2023.481

Previous Articles     Next Articles

Key preparation processes and applications of arabinoxylan

Guang CHEN1,2(),Jiangtao LYU1,Xueliang QIU2,Libing DING1,Yichen CAI1,Yue CHEN1,Zhenxue LIU1,Lushan WANG2,*()   

  1. 1. Chongqing Three Gorges University, Chongqing 404100, China
    2. The State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
  • Received:2023-11-17 Online:2024-11-20 Published:2024-11-29
  • Contact: Lushan WANG E-mail:1130190215@qq.com;lswang@sdu.edu.cn

Abstract:

Arabinoxylan (AX) was an important component of hemicellulose in plant cell walls, which wa s found in grains such as corn, wheat, barley and rice. AX not only had antioxidant, prebiotic potential, and immunomodulatory activity but also had water retention, biocompatibility, and mechanical properties. At the same time, it could be converted into clean energy. Therefore, it was widely used in food, medical, industrial, and other fields. The biological activity of AX was closely related to its chemical structure. The fine structures and the functional properties of AX depended on different cereal sources and different extraction methods. In this paper, we summarized several aspects of AX, which contained the structural characteristics, biological activities, serval methods of extraction and purification from various raw materials, and the application.

Key words: arabinoxylan, preparation technology, functional property, biosynthesis, biomaterials

CLC Number: 

  • S-1

Table 1

Arabinoxylan contents of various cereals"

谷物 全AX质量分数/% 水可提取AX质量分数/% 提取方法 参考文献
小麦 9.5~13.0 3.1~4.5 碱提取 [7]
大麦 3.5~6.05 0.4~1.0 [8]
燕麦 21.9~33.0 碱提取 [9]
黑麦 6.7~12.1 2.2~4.7 [10]
高粱 2.95~10.82 碱提取 [11]
甘蔗渣 18.28 碱提取 [12]
玉米 22.9 碱提取 [13]

Fig.1

Grain cell wall composition and arabinoxylan structures[14]"

Table 2

Comparison of arabinoxylan structures from various cereal sources after extraction using different methods"

谷物 提取方法 收率/% 摩尔质量/(kg·mol-1) A/X(质量比) 阿魏酸含量/(mg·g-1) DPPH(EC50) 参考文献
甘蔗渣 0.25 mol/L氢氧化钠, 121 ℃, 30 min 0.08±0.07 [26]
0.5 mol/L氢氧化钠, 121 ℃, 30 min 1.12±0.28 47.00 [26]
1 mol/L氢氧化钠, 121 ℃, 30 min 7.22±0.26 212.00 [26]
2 mol/L氢氧化钠, 121 ℃, 60 min, 连续提取3次 21.70±0.28 212.00 [26]
玉米麸皮 1∶30(W/V), 浓度为0.3 mol/L氢氧化钠, 25 min, 70 ℃, 超声波功率500 W 27.78±0.17 6.30 [27]
1∶30(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率400 W 20.45 [27]
1∶30(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率500 W 21.45 [27]
1∶30(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率600 W 19.24 [27]
1∶25(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率500 W 20.55 [27]
1∶35(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率500 W 16.68 [27]
麦麸 1∶7(W/V), 纯水, 60 ℃, 30 min, 未处理粒径(2 644 μm) 0.40 403.00 0.48 2.96 [28]
1∶7(W/V), 纯水, 60 ℃, 30 min, 研磨后(749.9 μm) 1.20 134.00 0.44 2.84 [28]
1∶7(W/V), 纯水, 60 ℃, 30 min, 挤压后(285.8 μm) 1.80 345.00 0.434 2.70 [28]
啤酒厂废谷物 1∶7(W/V), 加酶Laminex, 35℃, 6h 25.8±0.40 0.90 [29]
玉米纤维 SWE, 1∶14(W/V), 140 ℃, 30 min, 10~11 MPa 3.20±0.40 171.10 2.35 22.40±1.50 4.46 [30]
SWE, 1∶14(W/V), 160 ℃, 5 min, 10~11 MPa 5.00±1.90 367.10 2.24 14.10±0.20 5.79 [30]
SWE, 1∶14(W/V), 160 ℃, 15 min, 10~11 MPa 8.40±1.50 105.50 1.48 30.30±1.80 5.33 [30]
SWE, 1∶14(W/V), 160 ℃, 30 min, 10~11 MPa 12.20±0.80 57.60 0.99 39.70±0.20 4.63 [30]
SWE, 1∶14(W/V), 160 ℃, 60 min, 10~11 MPa 18.50±0.90 32.90 0.66 47.80±1.40 4.23 [30]
SWE, 1∶14(W/V), 180 ℃, 30 min, 10~11 MPa 18.30±0.80 32.50 0.66 47.90±2.40 3.89 [30]
SWE, 1∶14(W/V), 160 ℃, 30 min, 10~11 MPa, pH 5 1.70±0.10 190.70 0.99 11.90±1.50 8.84 [30]
SWE, 1∶14(W/V), 160 ℃, 30 min, 10~11 MPa, pH 7 3.00±0.30 178.10 0.70 3.90±2.10 6.11 [30]
SWE, 1∶14(W/V), 160 ℃, 30 min, 10~11 MPa, pH 9.2 14.50±0.60 199.80 0.56 4.00±1.00 4.95 [30]
高粱麸皮 饱和氢氧化钙(含1%硼氢化钠), 室温, 16 h 126.60±8.50 1.01 1.00 [31]
废高粱谷物 饱和氢氧化钙(含1%硼氢化钠), 室温, 16 h 126.60±7.30 1.04 0.77 [31]
高粱谷粒 饱和氢氧化钙(含1%硼氢化钠), 室温, 16 h 223.90±10.70 1.28 0.56 [31]
麦麸 1∶10(W/V), 1 mol/L氢氧化钠, 60 ℃, 16 h 761.00 0.69 [32]
1∶10(W/V), 0.5 mol/L氢氧化钡, 60 ℃, 16 h 704.00 0.78 [32]
SWE, 1∶10(W/V), 160 ℃, 10 min, pH为7.0 8.40±1.64 389.00 [32]
SWE, 1∶10(W/V), 160 ℃, 30 min, pH为7.0 111.00 [32]
SWE, 1∶10(W/V), 160 ℃, 60 min, pH为7.0 41.00 [32]

Fig.2

Schematic diagram of arabinoxylan extraction processes"

Fig.3

Schematic of xylan synthesis mechanism and characteristic enzymes involved in synthesis"

1 BRIENZA F , CANNELLA D , MONTESDEOCA D , et al. A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals[J]. RSC Sustainability, 2024, 2 (1): 37- 90.
doi: 10.1039/D3SU00140G
2 LI Shanshan , CHEN Hong , ZENG Zhen , et al. Arabinoxylan hydrolysates improved physical and oxidative stability of oil-in-water emulsions[J]. International Journal of Biological Macromolecules, 2024, 258, 128798.
doi: 10.1016/j.ijbiomac.2023.128798
3 OOI S L , MICALOS P S , PAK S C . Modified rice bran arabinoxylan as a nutraceutical in health and disease: a scoping review with bibliometric analysis[J]. PLoS One, 2023, 18 (8): e0290314.
doi: 10.1371/journal.pone.0290314
4 LI F , LI T T , ZHAO J J , et al. Unraveling the deterioration mechanism of dough during whole wheat flour processing: a case study of gluten protein containing arabinoxylan with different molecular weights[J]. Food Chemistry, 2024, 432, 137199.
doi: 10.1016/j.foodchem.2023.137199
5 WANG J , BAI J Y , FAN M C , et al. Cereal-derived arabinoxylans: structural features and structure-activity correlations[J]. Trends in Food Science and Technology, 2020, 96, 157- 165.
doi: 10.1016/j.tifs.2019.12.016
6 LU ZJ , L J , CHEN Z X , et al. Carboxymethylation and physicochemical characterization of wheat bran arabinoxylan[J]. Food Science, 2021, 42 (6): 61- 67.
7 KAUR A , SINGH B , YADAV M P , et al. Isolation of arabinoxylan and cellulose-rich arabinoxylan from wheat bran of different varieties and their functionalities[J]. Food Hydrocolloids, 2021, 112, 106287.
doi: 10.1016/j.foodhyd.2020.106287
8 IZYDORCZYK M S , DEXTER J E . Barley beta-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products: a review[J]. Food Research International, 2008, 41 (9): 850- 868.
doi: 10.1016/j.foodres.2008.04.001
9 SAAKE B , ERASMY N , KRUSE T , et al. Isolation and characterization of arabinoxylan from oat spelts[J]. ACS Symposium Series, 2004, 864, 52- 65.
10 KNUDSEN K E B , LAERKE H N . Review: rye arabinoxylans: molecular structure, physicochemical properties and physiological effects in the gastrointestinal tract[J]. Cereal Chemistry, 2010, 87 (4): 353- 362.
doi: 10.1094/CCHEM-87-4-0353
11 MIAFO A P T , KOUBALA B , KANSCI G , et al. Free sugars and non-starch polysaccharides-phenolic acid complexes from bran, spent grain and sorghum seeds[J]. Journal of Cereal Science, 2019, 87, 124- 131.
doi: 10.1016/j.jcs.2019.02.002
12 QIU S , YADAV M P , YIN L J . Characterization and functionalities study of hemicellulose and cellulose components isolated from sorghum bran, bagasse and biomass[J]. Food Chemistry, 2017, 230, 225- 233.
doi: 10.1016/j.foodchem.2017.03.028
13 YUE Z , SUN L L , SUN S N , et al. Structure of corn bran hemicelluloses isolated with aqueous ethanol solutions and their potential to produce furfural[J]. Carbohydrate Polymers, 2022, 288, 119420.
doi: 10.1016/j.carbpol.2022.119420
14 RUTHES A C , RUDJITO R C , RENCORET J , et al. Comparative recalcitrance and extractability of cell wall polysaccharides from cereal (wheat, rye, and barley) brans using subcritical water[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (18): 7192- 7204.
15 MALUNGA L N , IZYDORCZYK M , BETA T . Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity[J]. Bioactive Carbohydrates and Dietary Fibre, 2017, 10, 20- 26.
doi: 10.1016/j.bcdf.2017.05.001
16 XIAO X Y , QIAO J L , WANG J , et al. Grafted ferulic acid dose-dependently enhanced the apparent viscosity and antioxidant activities of arabinoxylan[J]. Food Hydrocolloids, 2022, 128, 107557.
doi: 10.1016/j.foodhyd.2022.107557
17 CHEN Z Y , LI S S , FU Y F , et al. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions[J]. Journal of Functional Foods, 2019, 54, 536- 551.
doi: 10.1016/j.jff.2019.02.007
18 GU I , LAM W S , MARASINI D , et al. In vitro fecal fermentation patterns of arabinoxylan from rice bran on fecal microbiota from normal-weight and overweight/obese subjects[J]. Nutrients, 2021, 13 (6): 2052.
doi: 10.3390/nu13062052
19 ZHANG Z Y , YANG P , ZHAO J B . Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health[J]. Animal Nutrition, 2021, 9, 31- 38.
doi: 10.3920/JAAN2020.0017
20 BROEKAERT W F , COURTIN C M , VERBEKE K , et al. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides[J]. Critical Reviews in Food Science and Nutrition, 2011, 51 (2): 178- 194.
doi: 10.1080/10408390903044768
21 CHANG X , SHEN C Y , JIANG J G . Structural characterization of novel arabinoxylan and galactoarabinan from citron with potential antitumor and immunostimulatory activities[J]. Carbohydrate Polymers, 2021, 269, 118331.
doi: 10.1016/j.carbpol.2021.118331
22 GOVERS C , TANG Y F , STOLTE E H , et al. Wheat-derived arabinoxylans reduced M2-macrophage functional activity, but enhanced monocyte-recruitment capacity[J]. Food & Function, 2020, 11 (8): 7073- 7083.
23 WAN L J , YUAN Z Z , WU B , et al. Dissolution behavior of arabinoxylan from sugarcane bagasse in tetrabutylammonium hydroxide aqueous solution[J]. Carbohydrate Polymers, 2022, 282, 119037.
doi: 10.1016/j.carbpol.2021.119037
24 ROBERT B , CHENTHAMARA D , SUBRAMANIAM S . Fabrication and biomedical applications of arabinoxylan, pectin, chitosan, soy protein, and silk fibroin hydrogels via laccase-ferulic acid redox chemistry[J]. International Journal of Biological Macromolecules, 2022, 201, 539- 556.
doi: 10.1016/j.ijbiomac.2021.12.103
25 SCHMIDT M , WIEGE B , HOLLMANN J . Comparison of alkaline/oxidative and hydrothermal extraction of wheat bran arabinoxylans[J]. Foods, 2021, 10 (4): 826.
doi: 10.3390/foods10040826
26 KHALEGHIPOUR L , LINARES-PASTÉN J A , RASHEDI H , et al. Extraction of sugarcane bagasse arabinoxylan, integrated with enzymatic production of xylo-oligosaccharides and separation of cellulose[J]. Biotechnology for Biofuels, 2021, 14 (1): 153.
doi: 10.1186/s13068-021-01993-z
27 JIANG Y Y , BAI X , LANG S M , et al. Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology[J]. International Journal of Biological Macromolecules, 2019, 128, 452- 458.
doi: 10.1016/j.ijbiomac.2019.01.138
28 DEMUTH T , BETSCHART J , NYSTRÖM L . Structural modifications to water-soluble wheat bran arabinoxylan through milling and extrusion[J]. Carbohydrate Polymers, 2020, 240, 116328.
doi: 10.1016/j.carbpol.2020.116328
29 LYNCH K M , STRAIN C R , JOHNSON C , et al. Extraction and characterisation of arabinoxylan from brewers spent grain and investigation of microbiome modulation potential[J]. European Journal of Nutrition, 2021, 60 (8): 4393- 4411.
doi: 10.1007/s00394-021-02570-8
30 RUDJITO R C , JIM É NEZ-QUERO A , HAMZAOUI M , et al. Tuning the molar mass and substitution pattern of complex xylans from corn fibre using subcritical water extraction[J]. Green Chemistry, 2020, 22 (23): 8337- 8352.
doi: 10.1039/D0GC02897E
31 TAKOUDJOU M A P , GUDIPATI M , BARGUI K B , et al. Purification and structural characterization of calcium hydroxide isolated arabinoxylans derived from bran, spent grain and sorghum grains[J]. Journal of Cereal Science, 2021, 100, 23- 27.
32 RUDJITO R C , RUTHES A C , JIMÉNEZ-QUERO A , et al. Feruloylated arabinoxylans from wheat bran: optimization of extraction process and validation at pilot scale[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (15): 13167- 13177.
33 DALVEER K , GISHA S , UMESH S , et al. Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization[J]. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100011.
doi: 10.1016/j.carpta.2020.100011
34 ANDREA R S , CLARA F , TORRADO A M , et al. Extraction of the wheat straw hemicellulose fraction assisted by commercial endo-xylanases: role of the accessory enzyme activities[J]. Industrial Crops & Products, 2022, 179, 114655.
35 PIHLAJANIEMI V , MATTILA O , KOITTO T , et al. Production of syrup rich in arabinoxylan oligomers and antioxidants from wheat bran by alkaline pretreatment and enzymatic hydrolysis, and applicability in baking[J]. Journal of Cereal Science, 2020, 95, 1- 11.
36 MA F M , LI X L , YIN J Y , et al. Optimisation of double-enzymatic extraction of arabinoxylan from fresh corn fibre[J]. Journal of Food Science and Technology, 2020, 57 (12): 4649- 4659.
doi: 10.1007/s13197-020-04502-6
37 RUTHES A C , MARTÍNEZ-ABAD A , TAN H T , et al. Sequential fractionation of feruloylated hemicelluloses and oligosaccharides from wheat bran using subcritical water and xylanolytic enzymes[J]. Green Chemistry, 2017, 19 (8): 1919- 1931.
doi: 10.1039/C6GC03473J
38 SMITH P J , WANG H T , YORK W S , et al. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis[J]. Biotechnology for Biofuels, 2017, 10, 286.
doi: 10.1186/s13068-017-0973-z
39 ZABOTINA O A , ZHANG N , WEERTS R . Polysaccharide biosynthesis: glycosyltransferases and their complexes[J]. Frontiers in Plant Science, 2021, 12, 625307.
doi: 10.3389/fpls.2021.625307
40 RENNIE E A , SCHELLER H V . Xylan biosynthesis[J]. Current Opinion in Biotechnology, 2014, 26, 100- 107.
doi: 10.1016/j.copbio.2013.11.013
41 CURRY T M , PE A M J , URBANOWICZ B R . An update on xylan structure, biosynthesis, and potential commercial applications[J]. Cell Surface, 2023, 9, 100101.
doi: 10.1016/j.tcsw.2023.100101
42 LI J , LU Z J , CHEN Z X , et al. Preparation and characterization of pH-responsive microgel using arabinoxylan from wheat bran for BSA delivery[J]. Food Chemistry, 2021, 342, 128220.
doi: 10.1016/j.foodchem.2020.128220
43 MORALES-BURGOS A M , CARVAJAL-MILLAN E , SOTELO-CRUZ N , et al. Highly cross-linked arabinoxylans microspheres as a microbiota-activated carrier for colon-specific insulin delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 16- 22.
doi: 10.1016/j.ejpb.2021.02.014
44 WU Y , ZHANG G Y . Synbiotic encapsulation of probiotic Latobacillus plantarum by alginate-arabinoxylan composite microspheres[J]. LWT: Food Science and Technology, 2018, 93, 135- 141.
doi: 10.1016/j.lwt.2018.03.034
45 MOREIRINHA C , VILELA C , SILVA N H , et al. Antioxidant and antimicrobial films based on brewers spent grain Arabinoxylans, nanocellulose and feruloylated compounds for active packaging[J]. Food Hydrocolloids, 2020, 108, 105836.
doi: 10.1016/j.foodhyd.2020.105836
46 YING R F , LI T , WU C E , et al. Preparation and characterisation of arabinoxylan and (1, 3)(1, 4)-beta-glucan alternating multilayer edible films simulated those of wheat grain aleurone cell wall[J]. International Journal of Food Science and Technology, 2021, 56 (7): 3188- 3196.
doi: 10.1111/ijfs.14848
47 KHAN M U A , HAIDER S , RAZA M A , et al. Smart and pH-sensitive rGO/arabinoxylan/chitosan composite for wound dressing: in-vitro drug delivery, antibacterial activity, and biological activities[J]. International Journal of Biological Macromolecules, 2021, 192, 820- 831.
doi: 10.1016/j.ijbiomac.2021.10.033
48 ASLAMKHAN M U , HAIDER A , ABD RAZAK S I , et al. Arabinoxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing[J]. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15 (4): 322- 335.
doi: 10.1002/term.3168
49 SONG Zhaolin , LI Miaomiao , DU Jinhua , et al. Effects of non-starch polysaccharides from pure wheat malt beer on beer quality, in vitro antioxidant, prebiotics, hypoglycemic and hypolipidemic properties[J]. Food Bioscience, 2022, 47, 101780.
doi: 10.1016/j.fbio.2022.101780
50 ZANNINI E , NUęÑEZÁ B , SAHIN A W , et al. Arabinoxylans as functional food ingredients: a review[J]. Foods, 2022, 11 (7): 1026.
doi: 10.3390/foods11071026
51 KAMEL R , AFIFI S M , KASSEM I A A , et al. Arabinoxylan and rhamnogalacturonan mucilage: outgoing and potential trends of pharmaceutical, environmental, and medicinal merits[J]. International Journal of Biological Macromolecules, 2020, 165 (Pt B): 2550- 2564.
52 MENDIS M , LECLERC E , SIMSEK S . Arabinoxylans, gut microbiota and immunity[J]. Carbohydrate Polymers, 2016, 139, 159- 166.
doi: 10.1016/j.carbpol.2015.11.068
53 WANG H , HUANG X J , TAN H Z , et al. Interaction between dietary fiber and bifidobacteria in promoting intestinal health[J]. Food Chemistry, 2022, 393, 133407.
doi: 10.1016/j.foodchem.2022.133407
54 ZHANG B J , ZHONG Y D , DONG D J , et al. Gut microbial utilization of xylan and its implication in gut homeostasis and metabolic response[J]. Carbohydrate Polymers, 2022, 286, 119271.
doi: 10.1016/j.carbpol.2022.119271
55 NURIA S B , IRINA D , ESTHER A . From biomass to sugar alcohols: purification of wheat bran hydrolysates using boronic acid carriers followed by hydrogenation of sugars over Ru/H-ZSM-5[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (9): 11930- 11938.
56 GÍRIO F M , FONSECA C , CARVALHEIRO F , et al. Hemicelluloses for fuel ethanol: a review[J]. Bioresource Technology, 2010, 101 (13): 4775- 4800.
doi: 10.1016/j.biortech.2010.01.088
57 LÓPEZ-MALDONADO E A , OROPEZA-GUZMÁN M . Nejayote biopolyelectrolytes multifunctionality (glucurono ferulauted arabinoxylans) in the separation of hazardous metal ions from industrial wastewater[J]. Chemical Engineering Journal, 2021, 423, 130210.
doi: 10.1016/j.cej.2021.130210
58 JAHAN A A , GONZÁLEZ ORTIZ G , MOSS A F , et al. Role of supplemental oligosaccharides in poultry diets[J]. World's Poultry Science Journal, 2022, 78 (3): 615- 639.
doi: 10.1080/00439339.2022.2067805
59 XU Y T , BOLVIG A K , MCCARTHY-SINCLAIR B , et al. The role of rye bran and antibiotics on the digestion, fermentation process and short-chain fatty acid production and absorption in an intact pig model[J]. Food & Function, 2021, 12 (7): 2886- 2900.
60 LI Y , YUAN W , ZHANG Y , et al. Single or combined effects of dietary arabinoxylan-oligosaccharide and inulin on growth performance, gut microbiota, and immune response in Pacific white shrimp Litopenaeus vannamei[J]. Journal of Oceanology and Limnology, 2021, 39 (2): 741- 754.
doi: 10.1007/s00343-020-9083-z
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[2] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[3] CHENG Li-qing1,2, SHI Qiao-lian2. A new hybrid conjugate gradient method[J]. J4, 2010, 45(6): 81 -85 .
[4] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[5] SHI Chang-guang . Multi-soliton solution of the Faddeev model[J]. J4, 2007, 42(7): 38 -40 .
[6] MA Jie-xiong,JIANG Li,QI Yu-yu,XIANG FEng-ning,XIA Guang-min . The growth of calli and regenerated plantlets of Gentiana Przewalskii Maxim. and the constituents analysis of its two effective components[J]. J4, 2006, 41(6): 157 -160 .
[7] ZHAO Tong-xin1, LIU Lin-de1*, ZHANG Li1, PAN Cheng-chen2, JIA Xing-jun1. Pollinators and pollen polymorphism of  Wisteria sinensis (Sims) Sweet[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 1 -5 .
[8] MA Jian-ling . Spectral characterization of the rhomb-type achromatic retarder[J]. J4, 2007, 42(7): 27 -29 .
[9] WANG Kang, LI Hua. Analysis of the compound Haqing injection with hyphenated chromatography and chemometric resolution[J]. J4, 2009, 44(11): 16 -20 .
[10] CHEN Li, . Singular LQ suboptimal control problem with disturbance rejection[J]. J4, 2006, 41(2): 74 -77 .