JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 64-73.doi: 10.6040/j.issn.1671-9352.0.2023.485
CHEN Liang, FANG Chengwei, MENG Ji, MA Xiuping, ZHU Dan, LI Jiaxin*
CLC Number:
[1] 郭敬,方萌,雷登良,等. 六味地黄丸治疗老年痴呆症的研究进展[J]. 基层中医药,2023,2(7):102-113. GUO Jing, FANG Meng, LEI Dengliang, et al. Liuwei Dihuang pills in the treatment of senile dementia: a review[J]. Basic Traditional Chinese Medicine, 2023, 2(7):102-113. [2] CUMMINGS J L, TONG G, BALLARD C. Treatment combinations for Alzheimers disease: current and future pharmacotherapy options[J]. Journal of Alzheimers Disease, 2019, 67(3):779-794. [3] 梅婷婷,闫珺,陈晶. 石菖蒲化学成分及其药理作用概述[J]. 中医药信息,2022,39(4):77-80. MEI Tingting, YAN Jun, CHEN Jing. Overview of active ingredients and pharmacological effects of Acorus tatarinowii[J]. Information on Traditional Chinese Medicine, 2022, 39(4):77-80. [4] 芦锰,周雨慧,李晓宁,等. 基于数据挖掘中医药治疗阿尔茨海默病用药规律研究[J]. 中国中药杂志,2021,46(6):1558-1563. LU Meng, ZHOU Yuhui, LI Xiaoning, et al. Research on regularity of traditional Chinese medicine in treatment of Alzheimers disease based on data mining[J]. China Journal of Chinese Materia Medica, 2021, 46(6):1558-1563. [5] YANG Y X, CHEN Y T, ZHOU X J, et al. Beta-asarone, a major component of Acorus tatarinowii Schott, attenuates focal cerebral ischemia induced by middle cerebral artery occlusion in rats[J]. BMC Complementary and Alternative Medicine, 2013, 13:236. [6] GAO P, CHANG K, YUAN S, et al. Exploring the mechanism of hepatotoxicity induced by Dictamnus dasycarpus based on network pharmacology, molecular docking and experimental pharmacology[J]. Molecules, 2023, 28(13):5045. [7] GUO W, HUANG J H, WANG N, et al. Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula Zuojin pill in suppressing hepatocellular carcinoma[J]. Frontiers in Pharmacology, 2019, 10:1185. [8] 陶雪芬,朱江伟,金银秀,等. 双分子γ-咔啉衍生物的合成及其对胆碱酯酶的抑制活性研究[J]. 中国现代应用药学,2023,40(19):2665-2668. TAO Xuefen, ZHU Jiangwei, JIN Yinxiu, et al. Synthesis and acetylcholinesterase inhibition activity of bivalent γ-carboline derivatives[J]. Chinese Journal of Modern Applied Pharmacy, 2023, 40(19):2665-2668. [9] VENKATESAN K. Anti-amnesic and anti-cholinesterase activities of α-asarone against scopolamine-induced memory impairments in rats[J]. European Review for Medical and Pharmacological Sciences, 2022, 26(17):6344-6350. [10] DU X Y, CAO Y S, YANG J, et al. Preclinical evidence and possible mechanisms of β-asarone for rats and mice with Alzheimers disease: a systematic review and meta-analysis[J]. Frontiers in Pharmacology, 2022, 13:956746. [11] GARABADU D, SHARMA M. Eugenol attenuates scopolamine-induced hippocampal cholinergic, glutamatergic, and mitochondrial toxicity in experimental rats[J]. Neurotoxicity Research, 2019, 35(4):848-859. [12] SON M, PARK C, RAMPOGU S, et al. Discovery of novel acetylcholinesterase inhibitors as potential candidates for the treatment of Alzheimers disease[J]. International Journal of Molecular Sciences, 2019, 20(4):1000. [13] 卢彦宇,方梓庄,范洋溢,等. 阿尔茨海默病发病机制与药物治疗研究进展[J]. 生理科学进展,2023,54(2):81-89. LU Yanyu, FANG Zizhuang, FAN Yangyi, et al. Advances in the mechanism and pharmacotherapies of Alzheimers disease[J]. Progress in Physiological Sciences, 2023, 54(2):81-89. [14] JUNG H A, YOKOZAWA T, KIM B W, et al. Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases[J]. The American Journal of Chinese Medicine, 2010, 38(2):415-429. [15] CASTILLO C, BRAVO-ARREPOL G, WENDT A, et al. Neuroprotective properties of eudesmin on a cellular model of amyloid-β peptide toxicity[J]. Journal of Alzheimers Disease, 2023, 94(S1):S97-S108. [16] NEJABATI H R, ROSHANGAR L. Kaempferol as a potential neuroprotector in Alzheimers disease[J].Journal of Food Biochemistry, 2022, 46(12):e14375. [17] HAN X, CHENG X L, XU J Y, et al. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice[J]. Neuropharmacology, 2022, 219:109231. [18] LOPEZ-TOLEDO G, SILVA-LUCERO M D C, HERRERA-DÍAZ J, et al. Patient-derived fibroblasts with presenilin-1 mutations, that model aspects of Alzheimers disease pathology, constitute a potential object for early diagnosis[J]. Frontiers in Aging Neuroscience, 2022, 14:921573. [19] LAN G Y, WANG P, CHAN R B, et al. Astrocytic VEGFA: an essential mediator in blood-brain-barrier disruption in Parkinsons disease[J]. Glia, 2022, 70(2):337-353. [20] GUO J P, CHENG J, NORTH B J, et al. Functional analyses of major cancer-related signaling pathways in Alzheimers disease etiology[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2017, 1868(2):341-358. [21] CHEN S H, HE C Y, SHEN Y Y, et al. Polysaccharide krestin prevents Alzheimers disease-type pathology and cognitive deficits by enhancing monocyte amyloid-β processing[J]. Neuroscience Bulletin, 2022, 38(3):290-302. [22] TECALCO-CRUZ A C, ZEPEDA-CERVANTES J, ORTEGA-DOMINGUEZ B. Estrogenic hormones receptors in Alzheimers disease[J]. Molecular Biology Reports, 2021, 11:7517-7526. |
No related articles found! |
|