JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 74-84.doi: 10.6040/j.issn.1671-9352.0.2024.263
Previous Articles Next Articles
Lianjie ZHANG1(),Wei LI2,Ping YANG1,Min ZENG1,*(
),Qiuwang WANG1
CLC Number:
1 |
李光霁, 付亚男. SCO2布雷顿循环及其在光热发电中的应用综述[J]. 汽轮机技术, 2024, 66 (2): 81-87, 132, 160.
doi: 10.3969/j.issn.1001-5884.2024.02.001 |
LI Guangji , FU Yanan . Review of SCO2 Brayton cycle and its application in photothermal power generation[J]. Turbine Technology, 2024, 66 (2): 81-87, 132, 160.
doi: 10.3969/j.issn.1001-5884.2024.02.001 |
|
2 |
WU P , MA Y D , GAO C T , et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368, 110767.
doi: 10.1016/j.nucengdes.2020.110767 |
3 |
XU J L , LIU C , SUN E H , et al. Perspective of SCO2 power cycles[J]. Energy, 2019, 186, 115831.
doi: 10.1016/j.energy.2019.07.161 |
4 |
OUYANG T C , SU Z X , HUANG G C , et al. Modeling and optimization of a combined cooling, cascaded power and flue gas purification system in marine diesel engines[J]. Energy Conversion and Management, 2019, 200, 112102.
doi: 10.1016/j.enconman.2019.112102 |
5 |
SAEED M , KHATOON S , KIM M H . Design optimization and performance analysis of a supercritical carbon dioxide recompression Brayton cycle based on the detailed models of the cycle components[J]. Energy Conversion and Management, 2019, 196, 242- 260.
doi: 10.1016/j.enconman.2019.05.110 |
6 |
LIU H Q , CHI Z R , ZANG S S . Optimization of a closed Brayton cycle for space power systems[J]. Applied Thermal Engineering, 2020, 179, 115611.
doi: 10.1016/j.applthermaleng.2020.115611 |
7 | 李子扬, 郑楠, 方嘉宾, 等. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75 (6): 2143- 2156. |
LI Ziyang , ZHENG Nan , FANG Jiabin , et al. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle[J]. CIESC Journal, 2024, 75 (6): 2143- 2156. | |
8 |
ZHANG L J , KLEMEŠ J J , ZENG M , et al. Dynamic study of the extraction ratio and interstage pressure ratio distribution in typical layouts of SCO2 Brayton cycle under temperature fluctuations[J]. Applied Thermal Engineering, 2022, 212, 118553.
doi: 10.1016/j.applthermaleng.2022.118553 |
9 |
WANG K , HE Y L , ZHU H H . Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195, 819- 836.
doi: 10.1016/j.apenergy.2017.03.099 |
10 |
ZHU S P , ZHANG K , DENG K Y . A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles[J]. Renewable and Sustainable Energy Reviews, 2020, 120, 109611.
doi: 10.1016/j.rser.2019.109611 |
11 |
WANG X , WANG R , BIAN X Y , et al. Review of dynamic performance and control strategy of supercritical CO2 Brayton cycle[J]. Energy and AI, 2021, 5, 100078.
doi: 10.1016/j.egyai.2021.100078 |
12 | 王伟, 冯浩然, 岳娜, 等. 布雷顿循环冷端空冷换热器设计与变工况运行特性分析[J]. 热力发电, 2024, 53 (4): 63- 72. |
WANG Wei , FENG Haoran , YUE Na , et al. Design and off-design operating characteristics analysis of Brayton cycle cold end air-cooled heat exchanger[J]. Thermal Power Generation, 2024, 53 (4): 63- 72. | |
13 |
JUNG H Y , KIM M S , KO A R , et al. Investigation of CO2 leak accident in SFR coupled with S-CO2 Brayton cycle[J]. Annals of Nuclear Energy, 2017, 103, 212- 226.
doi: 10.1016/j.anucene.2017.01.013 |
14 |
PARK J H , BAE S W , PARK H S , et al. Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS[J]. Energy, 2018, 147, 1030- 1043.
doi: 10.1016/j.energy.2017.12.092 |
15 |
YU A F , SU W , LIN X X , et al. Recent trends of supercritical CO2 Brayton cycle: bibliometric analysis and research review[J]. Nuclear Engineering and Technology, 2021, 53 (3): 699- 714.
doi: 10.1016/j.net.2020.08.005 |
16 |
MOISSEYTSEV A , SIENICKI J J . Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor[J]. Nuclear Engineering and Design, 2008, 238 (8): 2094- 2105.
doi: 10.1016/j.nucengdes.2007.11.012 |
17 |
ZHANG L J , DENG T R , KLEMEVS J J , et al. Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions[J]. Energy, 2021, 237, 121610.
doi: 10.1016/j.energy.2021.121610 |
18 |
MA T , LI M J , XU J L , et al. Study of dynamic response characteristics of S-CO2 cycle in coal-fired power plants based on real-time micro-grid load and a novel synergistic control method with variable working conditions[J]. Energy Conversion and Management, 2022, 254, 115264.
doi: 10.1016/j.enconman.2022.115264 |
19 |
MING Y , TIAN R F , ZHAO F L , et al. Control strategies and transient characteristics of a 5MWth small modular supercritical CO2 Brayton-cycle reactor system[J]. Applied Thermal Engineering, 2023, 235, 121302.
doi: 10.1016/j.applthermaleng.2023.121302 |
20 |
WANG Z , ZHANG M H , GOU J L , et al. Study on start-up characteristics of a heat pipe cooled reactor coupled with a supercritical CO2 Brayton cycle[J]. Applied Thermal Engineering, 2024, 236, 121893.
doi: 10.1016/j.applthermaleng.2023.121893 |
21 |
OLUMAYEGUN O , WANG M H . Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes[J]. Fuel, 2019, 249, 89- 102.
doi: 10.1016/j.fuel.2019.03.078 |
22 |
YANG J Z , YU Z T , YAO H . Efficient turbomachinery layout design and performance comparison of supercritical CO2 cycles for high-temperature concentrated solar power plants under peak-shaving scenarios[J]. Energy, 2023, 285, 129445.
doi: 10.1016/j.energy.2023.129445 |
23 |
SHI X P , HE Q , LU C , et al. Variable load modes and operation characteristics of closed Brayton cycle pumped thermal electricity storage system with liquid-phase storage[J]. Renewable Energy, 2023, 203, 715- 730.
doi: 10.1016/j.renene.2022.12.116 |
24 |
ZHANG L J , YANG P , LI W , et al. A new structure of PCHE with embedded PCM for attenuating temperature fluctuations and its performance analysis[J]. Energy, 2022, 254, 124462.
doi: 10.1016/j.energy.2022.124462 |
25 |
YANG X M , LI C B , MA Y F , et al. High thermal conductivity of porous graphite/paraffin composite phase change material with 3D porous graphite foam[J]. Chemical Engineering Journal, 2023, 473, 145364.
doi: 10.1016/j.cej.2023.145364 |
26 | PASCH, J J, CONBOY T M, FLEMING D D, et al.Supercritical CO2 recompression Brayton cycle: completed assembly[EB/OL]. (2012-09-01)[2024-10-17]. https://digital.library.unt.edu/ark:/67531/metadc845414/ |
27 |
DENG T R , LI X H , WANG Q W , et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy, 2019, 180, 292- 302.
doi: 10.1016/j.energy.2019.05.074 |
[1] | ZHANG Jing-xiao1, LIU Xin-hua2. Function P-setes and discovery of structure-physical properties law in analogues system [J]. J4, 2012, 47(8): 98-102. |
[2] | SHI Kai-quan. Function P-sets [J]. J4, 2011, 46(2): 62-69. |
[3] | CUI Yu-quan, ZHANG Li, SHI Kai-quan. Study of the dynamic characteristics of Rough sets [J]. J4, 2010, 45(6): 8-14. |
[4] | . [J]. J4, 2009, 44(4): 92-96 . |
[5] | HUANG Jiang-Yan, XU Xiu-Qing, FANG Wen-Jing. Dynamic characteristics of rough integrals [J]. J4, 2009, 44(11): 93-96. |
[6] | YU Xiu-qing,REN Xue-fang . Measurement of F-rough integrals and recognition of the medicinal effect [J]. J4, 2008, 43(4): 28-32 . |
[7] | YU Xiu-qing,SHI Kai-quan . F-rough integrals generated by function one-direction S-rough sets [J]. J4, 2008, 43(2): 29-34 . |
[8] | ZHOU Yang ,L Kun , . Rough area and double rough integrals [J]. J4, 2008, 43(11): 91-96 . |
[9] |
YU Xiu-qing, .
The generation of P-rough integrals and their characteristics [J]. J4, 2008, 43(10): 67-70 . |
|