JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 74-84.doi: 10.6040/j.issn.1671-9352.0.2024.263
ZHANG Lianjie1, LI Wei2, YANG Ping1, ZENG Min1*, WANG Qiuwang1
CLC Number:
[1] 李光霁, 付亚男. SCO2布雷顿循环及其在光热发电中的应用综述[J]. 汽轮机技术, 2024, 66(2):81-87, 132, 160. LI Guangji, FU Yanan. Review of SCO2 Brayton cycle and its application in photothermal power generation[J]. Turbine Technology, 2024, 66(2):81-87, 132, 160. [2] WU P, MA Y D, GAO C T, et al. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications[J]. Nuclear Engineering and Design, 2020, 368:110767. [3] XU J L, LIU C, SUN E H, et al. Perspective of SCO2 power cycles[J]. Energy, 2019, 186:115831. [4] OUYANG T C, SU Z X, HUANG G C, et al. Modeling and optimization of a combined cooling, cascaded power and flue gas purification system in marine diesel engines[J].Energy Conversion and Management, 2019, 200:112102. [5] SAEED M, KHATOON S, KIM M H. Design optimization and performance analysis of a supercritical carbon dioxide recompression Brayton cycle based on the detailed models of the cycle components[J]. Energy Conversion and Management, 2019, 196:242-260. [6] LIU H Q, CHI Z R, ZANG S S. Optimization of a closed Brayton cycle for space power systems[J]. Applied Thermal Engineering, 2020, 179:115611. [7] 李子扬, 郑楠, 方嘉宾, 等. 再压缩S-CO2布雷顿循环性能分析及多目标优化[J]. 化工学报, 2024, 75(6):2143-2156. LI Ziyang, ZHENG Nan, FANG Jiabin, et al. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle[J]. CIESC Journal, 2024, 75(6):2143-2156. [8] ZHANG L J, KLEMEŠ J J, ZENG M, et al. Dynamic study of the extraction ratio and interstage pressure ratio distribution in typical layouts of SCO2 Brayton cycle under temperature fluctuations[J]. Applied Thermal Engineering, 2022, 212:118553. [9] WANG K, HE Y L, ZHU H H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: a review and a comprehensive comparison of different cycle layouts[J]. Applied Energy, 2017, 195:819-836. [10] ZHU S P, ZHANG K, DENG K Y. A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles[J]. Renewable and Sustainable Energy Reviews, 2020, 120:109611. [11] WANG X, WANG R, BIAN X Y, et al. Review of dynamic performance and control strategy of supercritical CO2 Brayton cycle[J]. Energy and AI, 2021, 5:100078. [12] 王伟, 冯浩然, 岳娜, 等. 布雷顿循环冷端空冷换热器设计与变工况运行特性分析[J]. 热力发电, 2024, 53(4):63-72. WANG Wei, FENG Haoran, YUE Na, et al. Design and off-design operating characteristics analysis of Brayton cycle cold end air-cooled heat exchanger[J]. Thermal Power Generation, 2024, 53(4):63-72. [13] JUNG H Y, KIM M S, KO A R, et al. Investigation of CO2 leak accident in SFR coupled with S-CO2 Brayton cycle[J]. Annals of Nuclear Energy, 2017, 103:212-226. [14] PARK J H, BAE S W, PARK H S, et al. Transient analysis and validation with experimental data of supercritical CO2 integral experiment loop by using MARS[J]. Energy, 2018, 147:1030-1043. [15] YU A F, SU W, LIN X X, et al. Recent trends of supercritical CO2 Brayton cycle: bibliometric analysis and research review[J]. Nuclear Engineering and Technology, 2021, 53(3):699-714. [16] MOISSEYTSEV A, SIENICKI J J. Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor[J]. Nuclear Engineering and Design, 2008, 238(8):2094-2105. [17] ZHANG L J, DENG T R, KLEMEVS J J, et al. Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions[J]. Energy, 2021, 237:121610. [18] MA T, LI M J, XU J L, et al. Study of dynamic response characteristics of S-CO2 cycle in coal-fired power plants based on real-time micro-grid load and a novel synergistic control method with variable working conditions[J]. Energy Conversion and Management, 2022, 254:115264. [19] MING Y, TIAN R F, ZHAO F L, et al. Control strategies and transient characteristics of a 5MWth small modular supercritical CO2 Brayton-cycle reactor system[J]. Applied Thermal Engineering, 2023, 235:121302. [20] WANG Z, ZHANG M H, GOU J L, et al. Study on start-up characteristics of a heat pipe cooled reactor coupled with a supercritical CO2 Brayton cycle[J]. Applied Thermal Engineering, 2024, 236:121893. [21] OLUMAYEGUN O, WANG M H. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes[J]. Fuel, 2019, 249:89-102. [22] YANG J Z, YU Z T, YAO H. Efficient turbomachinery layout design and performance comparison of supercritical CO2 cycles for high-temperature concentrated solar power plants under peak-shaving scenarios[J]. Energy, 2023, 285:129445. [23] SHI X P, HE Q, LU C, et al. Variable load modes and operation characteristics of closed Brayton cycle pumped thermal electricity storage system with liquid-phase storage[J]. Renewable Energy, 2023, 203:715-730. [24] ZHANG L J, YANG P, LI W, et al. A new structure of PCHE with embedded PCM for attenuating temperature fluctuations and its performance analysis[J]. Energy, 2022, 254:124462. [25] YANG X M, LI C B, MA Y F, et al. High thermal conductivity of porous graphite/paraffin composite phase change material with 3D porous graphite foam[J]. Chemical Engineering Journal, 2023, 473:145364. [26] PASCH, J J, CONBOY T M, FLEMING D D, et al.Supercritical CO2 recompression Brayton cycle: completed assembly[EB/OL].(2012-09-01)[2024-10-17]. https://digital.library.unt.edu/ark:/67531/metadc845414/ [27] DENG T R, LI X H, WANG Q W, et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy, 2019, 180:292-302. |
[1] | ZHANG Jing-xiao1, LIU Xin-hua2. Function P-setes and discovery of structure-physical properties law in analogues system [J]. J4, 2012, 47(8): 98-102. |
[2] | SHI Kai-quan. Function P-sets [J]. J4, 2011, 46(2): 62-69. |
[3] | CUI Yu-quan, ZHANG Li, SHI Kai-quan. Study of the dynamic characteristics of Rough sets [J]. J4, 2010, 45(6): 8-14. |
[4] | . [J]. J4, 2009, 44(4): 92-96 . |
[5] | HUANG Jiang-Yan, XU Xiu-Qing, FANG Wen-Jing. Dynamic characteristics of rough integrals [J]. J4, 2009, 44(11): 93-96. |
[6] | YU Xiu-qing,REN Xue-fang . Measurement of F-rough integrals and recognition of the medicinal effect [J]. J4, 2008, 43(4): 28-32 . |
[7] | YU Xiu-qing,SHI Kai-quan . F-rough integrals generated by function one-direction S-rough sets [J]. J4, 2008, 43(2): 29-34 . |
[8] | ZHOU Yang ,L Kun , . Rough area and double rough integrals [J]. J4, 2008, 43(11): 91-96 . |
[9] |
YU Xiu-qing, .
The generation of P-rough integrals and their characteristics [J]. J4, 2008, 43(10): 67-70 . |
|