JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 64-73, 92.doi: 10.6040/j.issn.1671-9352.0.2023.485

Previous Articles     Next Articles

Mechanism of Acotus tatarinowii Schott in treating Alzheimer's disease

Liang CHEN(),Chengwei FANG,Ji MENG,Xiuping MA,Dan ZHU,Jiaxin LI*()   

  1. College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
  • Received:2023-11-21 Online:2024-11-20 Published:2024-11-29
  • Contact: Jiaxin LI E-mail:chenliang8302@126.com;carry556@126.com

Abstract:

We analyzed the mechanism of action of Acorus tatarinowii Schott (ATS) in the treatment of Alzheimer's disease (AD) based on network pharmacology, molecular docking, and experimental verification. After the active components of ATS were collected by TCMSP database and literature review, the targets of active components of ATS were predicted by Swiss target prediction database. Protein-protein interaction analysis was carried out using STRING database. GO and KEGG signal pathway enrichment analysis was carried out by DAVID database for key targets; Finally, AutoDock was used to verify the molecular docking between active ingredients and important targets, and the effect of ATS on AChE activity was verified by enzyme inhibition experiments. 7 active ingredients were screened, corresponding to 254 targets, 1 981 AD targets, 120 drug disease common targets. GO enrichment analysis obtain 306 entries, KEGG pathway enrichment analysis obtained 79 signal pathways, it mainly included cancer, Estrogen and VEGF signaling pathway; Molecular docking results showed that AChE and AKT1 target could spontaneously bind to most active components of ATS stably. Enzyme inhibition experiment showed that ATS can inhibit AChE activity. In this study, the mechanism of action of ATS in the treatment of AD was predicted and verified from the aspects of network pharmacology, molecular docking and enzyme inhibition experiments, so as to provide reference and basis for clinical application and further development of ATS.

Key words: Acotus tatarinowii Schott, Alzheimer's disease, network pharmacology, molecular docking, mechanism of action

CLC Number: 

  • R285.5

Table 1

Website of network pharmacology database"

数据库名称 网址
TCMSP https://old.tcmsp-e.com/tcmsp.php
PubChem https://pubchem.ncbi.nlm.nih.gov/
SwissTargetPrediction http://www.swisstargetprediction.ch/
GeneCards https://www.genecards.org/
OMIM https://www.omim.org/
PharmGKB https://www.pharmgkb.org/
TTD http://db.idrblab.net/ttd/
DrugBank https://go.drugbank.com/
Venny 2.1.0 https://bioinfogp.cnb.csic.es/tools/venny/
STRING https://cn.string-db.org/
DAVID https://david.ncifcrf.gov/
PCSD PDB https://www.rcsb.org/search

Table 2

Partial active ingredients of Acorus tatarinowii"

编号 中文名 英文名 CAS号 分子量 生物利用度/% 类药性
SCP1 8-异戊烯基山奈酚 8-Isopentenyl-kaempferol 28610-31-3 354.38 38.04 0.39
SCP2 桉脂素 Eudesmin 526-06-7 386.48 52.35 0.62
SCP3 环阿屯醇 Cycloartenol 469-38-5 426.80 38.69 0.78
SCP4 山奈酚 Kaempferol 520-18-3 286.25 41.88 0.24
SCP5 α-细辛醚 α-Asarone 2883-98-9 208.28 35.61 0.06
SCP6 β-细辛醚 β-Asarone 5273-86-9 208.28 35.61 0.06
SCP7 丁香酚 Eugenol 97-53-0 164.22 56.24 0.04

Fig.1

Drug-disease target Venn diagram"

Fig.2

Protein-protein interaction (PPI) network diagram"

Fig.3

GO enrichment analysis"

Table 3

Results of KEGG pathway enrichment analysis"

编号 通路 基因
hsa05200 Pathways in cancer
(癌症信号通路)
HSP90AA1, F2, PTGS2, HIF1A, ESR1, MMP9, EGFR, RELA, VEGFA, AR, CASP3, AKT1, JAK2
hsa05207 Chemical carcinogenesis-receptor activation
(化学致癌-受体激活)
AR, HSP90AA1, SRC, AKT1, JAK2, ESR1, RELA, EGFR, VEGFA
hsa05167   Kaposi sarcoma-associated herpesvirus infection
(卡波西肉瘤相关疱疹病毒感染)
SRC, CASP3, AKT1, JAK2, PTGS2, HIF1A, RELA, VEGFA
hsa05205 Proteoglycans in cancer
(癌症中的蛋白多糖)
SRC, CASP3, AKT1, HIF1A, ESR1, MMP9, EGFR, VEGFA
hsa04926 Relaxin signaling pathway
(松弛素信号通路)
SRC, NOS3, AKT1, MMP9, RELA, EGFR, VEGFA
hsa05417 Lipid and atherosclerosis
(脂质和动脉粥样硬化)
HSP90AA1, SRC, NOS3, CASP3, AKT1, JAK2, MMP9, RELA
hsa04915 Estrogen signaling pathway
(雌激素信号通路)
HSP90AA1, SRC, NOS3, AKT1, ESR1, MMP9, EGFR
hsa05418 Fluid shear stress and atherosclerosis
(液体剪切应力和动脉粥样硬化)
HSP90AA1, SRC, NOS3, AKT1, MMP9, RELA, VEGFA
hsa05215 Prostate cancer
(前列腺癌)
AR, HSP90AA1, AKT1, MMP9, RELA, EGFR
hsa04933 AGE-RAGE signaling pathway in diabetic complications
(糖尿病并发症AGE-RAGE信号通路)
NOS3, CASP3, AKT1, JAK2, RELA, VEGFA
hsa04066 HIF-1 signaling pathway
(HIF-1信号通路)
NOS3, AKT1, HIF1A, RELA, EGFR, VEGFA
hsa04370 VEGF signaling pathway
(VEGF信号通路)
SRC, NOS3, AKT1, PTGS2, VEGFA
hsa05163 Human cytomegalovirus infection
(人巨细胞病毒感染)
SRC, CASP3, AKT1, PTGS2, RELA, EGFR, VEGFA
hsa04917 Prolactin signaling pathway
(催乳素信号通路)
SRC, AKT1, JAK2, ESR1, RELA
hsa05010 Alzheimer's disease
(阿尔茨海默病)
APP, GRM5, CDK5, CASP3, AKT1, MAPT, PTGS2, RELA

Fig.4

KEGG pathway enrichment analysis"

Fig.5

Acorus tatarinowii-component-target-pathway-disease network"

Table 4

Results of docking active ingredient molecules"

编号 成分 AChE结合能/(kJ·mol-1) AKT1结合能/(kJ·mol-1)
SCP1 8-Isopentenyl-kaempferol(8-异戊烯基山奈酚) -32.90 -33.49
SCP2 Eudesmin(桉脂素) -31.48 -35.08
SCP3 Cycloartenol(环阿屯醇) -37.84 -44.54
SCP4 Kaempferol(山奈酚) -28.26 -28.46
SCP5 α-Asarone(α-细辛醚) -21.60 -19.84
SCP6 β-Asarone(β-细辛醚) -19.84 -22.27
SCP7 Eugenol(丁香酚) -22.10 -22.06

Fig.6

Molecular docking conformation diagram"

Table 5

Inhibitory activity of volatile oil from Acorus tatarinowii at different concentrations on AChE(n=3)"

石菖蒲挥发油质量浓度/(mg·L-1) 25 50 100 200 400 800 1 600
AChE活性抑制率/% 10.5±0.4 14.4±1.0 24.3±1.8 36.1±0.4 54.6±1.2 82.0±1.8 87.0±1.9
1 郭敬, 方萌, 雷登良, 等. 六味地黄丸治疗老年痴呆症的研究进展[J]. 基层中医药, 2023, 2 (7): 102- 113.
GUO Jing , FANG Meng , LEI Dengliang , et al. Liuwei Dihuang pills in the treatment of senile dementia: a review[J]. Basic Traditional Chinese Medicine, 2023, 2 (7): 102- 113.
2 CUMMINGS J L , TONG G , BALLARD C . Treatment combinations for Alzheimer's disease: current and future pharmacotherapy options[J]. Journal of Alzheimer's Disease, 2019, 67 (3): 779- 794.
doi: 10.3233/JAD-180766
3 梅婷婷, 闫珺, 陈晶. 石菖蒲化学成分及其药理作用概述[J]. 中医药信息, 2022, 39 (4): 77- 80.
MEI Tingting , YAN Jun , CHEN Jing . Overview of active ingredients and pharmacological effects of Acorus tatarinowii[J]. Information on Traditional Chinese Medicine, 2022, 39 (4): 77- 80.
4 芦锰, 周雨慧, 李晓宁, 等. 基于数据挖掘中医药治疗阿尔茨海默病用药规律研究[J]. 中国中药杂志, 2021, 46 (6): 1558- 1563.
LU Meng , ZHOU Yuhui , LI Xiaoning , et al. Research on regularity of traditional Chinese medicine in treatment of Alzheimer's disease based on data mining[J]. China Journal of Chinese Materia Medica, 2021, 46 (6): 1558- 1563.
5 YANG Y X , CHEN Y T , ZHOU X J , et al. Beta-asarone, a major component of Acorus tatarinowii Schott, attenuates focal cerebral ischemia induced by middle cerebral artery occlusion in rats[J]. BMC Complementary and Alternative Medicine, 2013, 13, 236.
doi: 10.1186/1472-6882-13-236
6 GAO P , CHANG K , YUAN S , et al. Exploring the mechanism of hepatotoxicity induced by Dictamnus dasycarpus based on network pharmacology, molecular docking and experimental pharmacology[J]. Molecules, 2023, 28 (13): 5045.
doi: 10.3390/molecules28135045
7 GUO W , HUANG J H , WANG N , et al. Integrating network pharmacology and pharmacological evaluation for deciphering the action mechanism of herbal formula Zuojin pill in suppressing hepatocellular carcinoma[J]. Frontiers in Pharmacology, 2019, 10, 1185.
doi: 10.3389/fphar.2019.01185
8 陶雪芬, 朱江伟, 金银秀, 等. 双分子γ-咔啉衍生物的合成及其对胆碱酯酶的抑制活性研究[J]. 中国现代应用药学, 2023, 40 (19): 2665- 2668.
TAO Xuefen , ZHU Jiangwei , JIN Yinxiu , et al. Synthesis and acetylcholinesterase inhibition activity of bivalent γ-carboline derivatives[J]. Chinese Journal of Modern Applied Pharmacy, 2023, 40 (19): 2665- 2668.
9 VENKATESAN K . Anti-amnesic and anti-cholinesterase activities of α-asarone against scopolamine-induced memory impairments in rats[J]. European Review for Medical and Pharmacological Sciences, 2022, 26 (17): 6344- 6350.
10 DU X Y , CAO Y S , YANG J , et al. Preclinical evidence and possible mechanisms of β-asarone for rats and mice with Alzheimer's disease: a systematic review and meta-analysis[J]. Frontiers in Pharmacology, 2022, 13, 956746.
doi: 10.3389/fphar.2022.956746
11 GARABADU D , SHARMA M . Eugenol attenuates scopolamine-induced hippocampal cholinergic, glutamatergic, and mitochondrial toxicity in experimental rats[J]. Neurotoxicity Research, 2019, 35 (4): 848- 859.
doi: 10.1007/s12640-019-0008-6
12 SON M , PARK C , RAMPOGU S , et al. Discovery of novel acetylcholinesterase inhibitors as potential candidates for the treatment of Alzheimer's disease[J]. International Journal of Molecular Sciences, 2019, 20 (4): 1000.
doi: 10.3390/ijms20041000
13 卢彦宇, 方梓庄, 范洋溢, 等. 阿尔茨海默病发病机制与药物治疗研究进展[J]. 生理科学进展, 2023, 54 (2): 81- 89.
LU Yanyu , FANG Zizhuang , FAN Yangyi , et al. Advances in the mechanism and pharmacotherapies of Alzheimer's disease[J]. Progress in Physiological Sciences, 2023, 54 (2): 81- 89.
14 JUNG H A , YOKOZAWA T , KIM B W , et al. Selective inhibition of prenylated flavonoids from Sophora flavescens against BACE1 and cholinesterases[J]. The American Journal of Chinese Medicine, 2010, 38 (2): 415- 429.
doi: 10.1142/S0192415X10007944
15 CASTILLO C , BRAVO-ARREPOL G , WENDT A , et al. Neuroprotective properties of eudesmin on a cellular model of amyloid-β peptide toxicity[J]. Journal of Alzheimer's Disease, 2023, 94 (S1): S97- S108.
doi: 10.3233/JAD-220935
16 NEJABATI H R , ROSHANGAR L . Kaempferol as a potential neuroprotector in Alzheimer's disease[J]. Journal of Food Biochemistry, 2022, 46 (12): e14375.
17 HAN X , CHENG X L , XU J Y , et al. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice[J]. Neuropharmacology, 2022, 219, 109231.
doi: 10.1016/j.neuropharm.2022.109231
18 LOPEZ-TOLEDO G , SILVA-LUCERO M D C , HERRERA-DÍAZ J , et al. Patient-derived fibroblasts with presenilin-1 mutations, that model aspects of Alzheimer's disease pathology, constitute a potential object for early diagnosis[J]. Frontiers in Aging Neuroscience, 2022, 14, 921573.
doi: 10.3389/fnagi.2022.921573
19 LAN G Y , WANG P , CHAN R B , et al. Astrocytic VEGFA: an essential mediator in blood-brain-barrier disruption in Parkinson's disease[J]. Glia, 2022, 70 (2): 337- 353.
doi: 10.1002/glia.24109
20 GUO J P , CHENG J , NORTH B J , et al. Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology[J]. Biochimica et Biophysica Acta Reviews on Cancer, 2017, 1868 (2): 341- 358.
doi: 10.1016/j.bbcan.2017.07.001
21 CHEN S H , HE C Y , SHEN Y Y , et al. Polysaccharide krestin prevents Alzheimer's disease-type pathology and cognitive deficits by enhancing monocyte amyloid-β processing[J]. Neuroscience Bulletin, 2022, 38 (3): 290- 302.
doi: 10.1007/s12264-021-00779-5
22 TECALCO-CRUZ A C , ZEPEDA-CERVANTES J , ORTEGA-DOMINGUEZ B . Estrogenic hormones receptors in Alzheimer's disease[J]. Molecular Biology Reports, 2021, 11, 7517- 7526.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Qi,ZHAO Xiu-heng,LI Guo-jun . Embedding hypergraph in trees of rings[J]. J4, 2007, 42(10): 114 -117 .
[2] LIU Jian-ya and ZHAN Tao . The quadratic Waring-Goldbach problem[J]. J4, 2007, 42(2): 1 -18 .
[3] LIU Ting-ting, CHEN Zhi-yong, LI Xiao-qin*, YANG Wen-zhi. The Berry-Esseen bound for the sequence of #br# negatively associated random variables#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 101 -106 .
[4] LI Shi-long,ZHANG Yun-feng . Error analysis of the rational interpolation based on arithmetic average difference quotient[J]. J4, 2007, 42(10): 106 -110 .
[5] YU Xiu-qing. (σ,τ)-expansion model of P-sets and its properties#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 90 -94 .
[6] TIAN You-gong, LIU Zhuan-ling. Extremal distributions for 5-convex stochastic orderings with arbitrary discrete support and applications in actuarial sciences[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 57 -62 .
[7] LIU Ling-xia . Existence of analytic invariant curves for a planar mapping near resonance[J]. J4, 2007, 42(2): 87 -91 .
[8] SHI Ai-ling1, MA Ming2*, ZHENG Ying2. Customer lifetime value and property with #br# homogeneous Poisson response[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 96 -100 .
[9] CHEN Cui. n-differentiation composition operators between weighted Banach  spaces of holomorphic functions[J]. J4, 2013, 48(4): 57 -59 .
[10] LIU Yan-qin,XU Ming-yu and JIANG Xiao-yun . The fractional nonlinear convection-diffusion equation and its solution[J]. J4, 2007, 42(1): 35 -39 .