JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (8): 103-112.doi: 10.6040/j.issn.1671-9352.0.2023.007

Previous Articles     Next Articles

Multi-particle short-distance teleportation in noisy environment with weak measurement

Miao LIU1,2(),Jiayin PENG1,2,3,*(),Jiangang TANG1,2   

  1. 1. School of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang, China
    2. Institute of Applied Mathematics, Yili Normal University, Yining 835000, Xinjiang, China
    3. School of Mathematics and Information Science, Neijiang Normal University, Neijiang 641100, Sichuan, China
  • Received:2023-01-05 Online:2024-08-20 Published:2024-07-31
  • Contact: Jiayin PENG E-mail:lium76@163.com;pengjiayin62226@163.com

Abstract:

Using a three-particle maximally entangled state and an auxiliary particle in the ground state |0? as the quantum channel, a new deterministic scheme for transmitting an unknown three-particle GHZ (Greenberger-Horne-Zeilinger) state is proposing. In this scheme, the sender and the receiver share the auxiliary particle at the same time, and both parties need to perform quantum gate operation on the shared auxiliary particle. The results show that the scheme saves quantum entanglement resources but shortens the teleportation distance, and can be extended to the teleportation of multi-particle GHZ state. Furthermore, taking the amplitude damping channel as an example, the influence of quantum noise on the scheme is discussed, and the fidelity of teleportation is obtained. The influence of weak measurement and its reversal measurement on the noise scheme is analyzed. It is found that for a specific GHZ state, the weak measurement and its reversal measurement will suppress or deteriorate the degradation of the fidelity of its teleportation caused by noise.

Key words: short-distance teleportation, GHZ state, amplitude damping, weak measurement

CLC Number: 

  • O431.2

Table 1

Relationship between Alice's measurement result, collapse state, and Bob's recovery unitary transformation"

测量结果 塌陷态 恢复酉变换
|0001?或者|1101? α|000?+β|111? σ0σ0σ0
|0101?或者|1001? α|000?-β|111? σ0σ0σz
|0011?或者|1111? α|001?+β|110? σ0σ0σx
|0111?或者|1011? α|001?-β|110? σ0σ0⊗iσy
|0000?或者|1100? α|001?+β|001? σxσxσ0
|0100?或者|1000? α|001?-β|001? σxσxσz
|0010?或者|1110? α|111?+β|000? σxσxσx
|0110?或者|1010? α|111?+β|000? σxσx⊗iσy

Fig.1

Fidelity of short-distance teleportation based onAD channel"

Fig.2

Comparison of fidelity of short-distance teleportation with and without weak measurements"

Fig.3

3D comparison of fidelity of short-distance teleportation with and without weak measurements"

Fig.4

Total success probability of short distance teleportation under weak and reverse measurements"

1 BENNETT C H , BRASSARD G , CRÉPEAU C , et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 1993, 70 (13): 1895- 1899.
doi: 10.1103/PhysRevLett.70.1895
2 RIEBE M , HÄFFNER H , ROOS C F , et al. Deterministic quantum teleportation with atoms[J]. Nature, 2004, 429, 734- 737.
doi: 10.1038/nature02570
3 PENG J Y , MO Z W . Several teleportation schemes of an arbitrary unknown multi-particle state via different quantum channels[J]. Chinese Physics B, 2013, 22 (5): 050310.
doi: 10.1088/1674-1056/22/5/050310
4 KARLSSON A , BOURENNANE M . Quantum teleportation using three-particle entanglement[J]. Physical Review A, 1998, 58 (6): 4394- 4400.
doi: 10.1103/PhysRevA.58.4394
5 KIM Y H , KULIK S P , SHIH Y . Quantum teleportation of a polarization state with a complete Bell state measurement[J]. Physical Review Letters, 2001, 86 (7): 1370- 1373.
doi: 10.1103/PhysRevLett.86.1370
6 SONG T Q . Teleportation of quantum states with continuous variables[J]. Physical Letters A, 2003, 316 (6): 363- 368.
doi: 10.1016/j.physleta.2003.07.007
7 XIANG S H . Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element[J]. Chinese Journal of Atomic and Molecular Physics, 2003, 20 (3): 425- 428.
8 CAO Z L , SONG W . Teleportation of a two-particle entangled state via W class states[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 347, 177- 183.
doi: 10.1016/j.physa.2004.08.033
9 WANG X W . Teleportation of an arbitrary two-particle state via a single cluster-class state[J]. Communications in Theoretical Physics, 2009, 52 (2): 209- 213.
doi: 10.1088/0253-6102/52/2/04
10 ZHAN Y B , ZHANG Q Y , WANG Y W , et al. Schemes for teleportation of an unknown single-qubit quantum state by using an arbitrary high-dimensional entangled state[J]. Chinese Physics Letters, 2010, 27 (1): 010307.
doi: 10.1088/0256-307X/27/1/010307
11 MA X S , HERBST T , SCHEIDL T , et al. Quantum teleportation over 143 kilometres using active feed-forward[J]. Nature, 2012, 489, 269- 273.
doi: 10.1038/nature11472
12 BOUWMEESTER D , PAN J W , MATTLE K , et al. Experimental quantum teleportation[J]. Nature, 1997, 390, 575- 579.
doi: 10.1038/37539
13 JIN X M , REN J G , YANG B , et al. Experimental free-space quantum teleportation[J]. Nature Photonics, 2010, 4 (6): 376- 381.
doi: 10.1038/nphoton.2010.87
14 LIU J C , LI Y H , NIE Y Y . Controlled teleportation of an arbitrary two-particle pure or mixed state by using a five-qubit cluster state[J]. International Journal of Theoretical Physics, 2010, 49 (8): 1976- 1984.
doi: 10.1007/s10773-010-0383-5
15 LI H X , DENG F G , ZHOU H Y . Controlled teleportation of an arbitrary multi-qudit state in a general form with 3-dimensional Greenberger-Horne-Zeilinger states[J]. Chinese Physics Letters, 2007, 24 (5): 1151- 1153.
doi: 10.1088/0256-307X/24/5/007
16 JEONG K , KIM J , LEE S . Minimal control power of the controlled teleportation[J]. Physical Review A, 2016, 93 (3): 032328.
doi: 10.1103/PhysRevA.93.032328
17 MAN Z X , XIA Y J , AN N B . Genuine multiqubit entanglement and controlled teleportation[J]. Physical Review A, 2007, 75 (5): 052306.
doi: 10.1103/PhysRevA.75.052306
18 ZHU F C , DU J Z , CHEN X B , WEN Q Y . Probabilistic teleportation of multi-particle partially entangled state[J]. Chinese Physics B, 2008, 17 (3): 771- 777.
doi: 10.1088/1674-1056/17/3/006
19 PENG J Y , LUO M X , MO Z W . Quantum tasks with non-maximally quantum channels via positive operator-valued measurement[J]. International Journal of Theoretical Physics, 2013, 52 (1): 253- 265.
doi: 10.1007/s10773-012-1328-y
20 YAN F , YAN T . Probabilistic teleportation via a non-maximally entangled GHZ state[J]. Chinese Science Bulletin, 2010, 55 (10): 902- 906.
doi: 10.1007/s11434-009-0725-y
21 PENG J Y , MO Z W . Hierarchical and probabilistic quantum state sharing with a nonmaxilly four-qubit cluster state[J]. International Journal of Quantum Information, 2013, 11 (1): 1350004.
doi: 10.1142/S0219749913500044
22 WANG T J , ZHOU H Y , DENG F G . Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements[J]. Physica A Statistical Mechanics & Its Applications, 2008, 387 (18): 4716- 4722.
23 PENG J Y , BAI M Q , MO Z W . Hierarchical and probabilistic quantum state sharing via a non-maximally entangled |χ⟩ state[J]. Chinese Physics B, 2014, 23 (1): 010304.
doi: 10.1088/1674-1056/23/1/010304
24 SHI R H , HUANG L S , WEI Y , et al. Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state[J]. Quantum Information Processing, 2011, 10 (1): 53- 61.
doi: 10.1007/s11128-010-0176-z
25 ZHA X W , ZOU Z C , QI J X , et al. Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. International Journal of Theoretical Physics, 2013, 52 (6): 1740- 1744.
doi: 10.1007/s10773-012-1208-5
26 PENG J Y , BAI M Q , MO Z W . Bidirectional quantum states sharing[J]. International Journal of Theoretical Physics, 2016, 55 (5): 2481- 2489.
doi: 10.1007/s10773-015-2885-7
27 YANG G , LIAN B W , NIE M , et al. Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement[J]. Chinese Physics B, 2017, 26 (4): 040305.
doi: 10.1088/1674-1056/26/4/040305
28 CHEN Y X , DU J , LIU S Y , et al. Cyclic quantum teleportation[J]. Quantum Information Processing, 2017, 16 (8): 201.
doi: 10.1007/s11128-017-1648-1
29 PENG J Y , HE Y . Annular controlled teleportation[J]. International Journal of Theoretical Physics, 2019, 58 (10): 3271- 3281.
doi: 10.1007/s10773-019-04202-8
30 WU F , BAI M Q , ZHANG Y C , et al. Cyclic quantum teleportation of an unknown multi-particle high-dimension state[J]. Modern Physics Letters B, 2020, 34 (5): 2050073.
doi: 10.1142/S0217984920500736
31 PENG J Y, TANG L, YANG Z, et al. Cyclic teleportation in noisy channel with nondemolition parity analysis and weak measurement[J]. Quantum Information Processing, 2022, 21: 21(3): 1-17.
32 ZHAN H T , YU X T , XIONG P Y , et al. Multi-hop teleportation based on W state and EPR pairs[J]. Chinese Physics B, 2016, 25 (5): 050305.
doi: 10.1088/1674-1056/25/5/050305
33 PENG J Y , BAI M Q , MO Z W . Deterministic multi-hop controlled teleportation of arbitrary single-qubit state[J]. International Journal of Theoretical Physics, 2017, 56, 3348- 3358.
doi: 10.1007/s10773-017-3504-6
34 TAN X D , HAN J Q . Short-distance teleportation of an arbitrary two-qubit state via Bell state[J]. International Journal of Theoretical Physics, 2021, 60 (4): 1275- 1282.
doi: 10.1007/s10773-021-04753-9
35 DAI H Y , CHEN P X , LI C Z . Teleportation of an arbitrary two-particle state by two partial entangled three-particle GHZ states[J]. Communications in Theoretical Physics, 2005, 43 (5): 799- 802.
doi: 10.1088/0253-6102/43/5/007
36 SUN L L , FAN Q B , ZHANG S . Probabilistic teleportation of an arbitrary two-particle state by a partial three-particle entangled GHZ state and a two-particle entangled state[J]. Chinese Physics, 2005, 14 (7): 1313- 1316.
doi: 10.1088/1009-1963/14/7/008
37 LI H, LI C W. Deterministic teleportation of an arbitrary two-qubit state via a six-qubit cluster state[C]//Proceedings of the 31st Chinese Control Conference. Hefei: IEEE, 2012: 7172-7176.
38 LI H , LI C , WU R . Deterministic teleportation of an arbitrary two-qubit state via a one-dimensional four-qubit cluster state[J]. Tsinghua Science & Technology, 2012, 17 (3): 313- 318.
doi: 10.3969/j.issn.1007-0214.2012.03.012
39 XIONG S Y , TANG L , ZHANG Q , et al. The rotation scheme of quantum states based on EPR pairs[J]. Modern Physics Letters B, 2022, 36 (5): 2150579.
doi: 10.1142/S0217984921505795
40 SCHOELKOPF R J , GIRVIN S M . Wiring up quantum systems[J]. Nature, 2008, 451, 664- 669.
doi: 10.1038/451664a
41 STEFFEN L , SALATHE Y , OPPLIGER M , et al. Deterministic quantum teleportation with feed-forward in a solid state system[J]. Nature, 2013, 500, 319- 322.
doi: 10.1038/nature12422
42 METCALF B J . Quantum teleportation on a photonic chip[J]. Nature Photonics, 2014, 8 (10): 770- 774.
doi: 10.1038/nphoton.2014.217
43 PIRANDOLA S , EISERT J , WEEDBROOK C , et al. Advances in quantum teleportation[J]. Nature Photonics, 2015, 9 (10): 641- 652.
doi: 10.1038/nphoton.2015.154
44 OH S , LEE S , LEE H W . Fidelity of quantum teleportation through noisy channels[J]. Physical Review A, 2002, 66 (2): 022316.
doi: 10.1103/PhysRevA.66.022316
45 ESPOUKEH P , PEDRAM P . Quantum teleportation through noisy channels with multi-qubit GHZ states[J]. Quantum Information Processing, 2014, 13 (8): 1789- 1811.
doi: 10.1007/s11128-014-0766-2
46 BENNETT C H , BRASSARD G , POPESCU S , et al. Purification of noisy entanglement and faithful teleportation via noisy channels[J]. Physical Review Letters, 1996, 76 (5): 722- 725.
doi: 10.1103/PhysRevLett.76.722
47 BADZIAG P , HORODECKI M , HORODECKI P , et al. Local environment can enhance fidelity of quantum teleportation[J]. Physical Review A, 2000, 62, 012311.
doi: 10.1103/PhysRevA.62.012311
48 BANDYOPADHYAY S . Origin of noisy states whose teleportation fidelity can be enhanced through dissipation[J]. Physical Review A, 2002, 65 (2): 022302.
doi: 10.1103/PhysRevA.65.022302
49 YANG G , LIAN B W , NIE M , et al. Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement[J]. Chinese Physics B, 2017, 26 (4): 040305.
doi: 10.1088/1674-1056/26/4/040305
50 PENG J Y , XIANG Y . Bidirectional remote state preparation in noisy environment assisted by weak measurement[J]. Optics Communications, 2021, 499, 127285.
doi: 10.1016/j.optcom.2021.127285
51 NIELSEN M A , CHUANG I L . Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2000.
[1] REN Chun-nian, GAO Jian. A theory research and experiment scheme on enable-control Anderson localization and delocalization based on quantum walk [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 61-66.
[2] PENG Jia-yin. Controlled remote preparation of n-qubit equatorial states [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MENG Xiang-bo1, ZHANG Li-dong1, DU Zi-ping2. Investment and reinsurance strategy for insurers under #br# mean-variance criterion with jumps#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 36 -40 .
[2] PENG Zhen-hua, XU Yi-hong*, TU Xiang-qiu. Optimality conditions for weakly efficient elements of nearly preinvex set-valued optimizaton#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 41 -44 .
[3] YUAN Hun-ping . Schur factorization and normal matrices factorization of row (column) symmetric matrices[J]. J4, 2007, 42(10): 123 -126 .
[4] ZOU Guo-ping1, MA Ru-ning1, DING Jun-di2, ZHONG Bao-jiang3. Image retrieval based on saliency weighted color and texture[J]. J4, 2010, 45(7): 81 -85 .
[5] CHEN Li . The robust fault diagnosis filter design for uncertain singular systems[J]. J4, 2007, 42(7): 62 -65 .
[6] WU Yun1,2, HAN Ya-die1. Existence of nontrivial solutions of nonlinear elliptic equation with critical potential[J]. J4, 2013, 48(4): 91 -94 .
[7] FAN Jian-Wu, DIAO Xiao-Hua, TIAN Ai-Shuo, YUAN Xiao-Jing. The M/M/1/N queuing system with negative customers and a single working vacation[J]. J4, 2009, 44(8): 68 -73 .
[8] LI Jian and XU Xiao-jing . The θ-rough fuzzy sets[J]. J4, 2006, 41(2): 24 -27 .
[9] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .
[10] SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1 -17 .