JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (2): 1-8.doi: 10.6040/j.issn.1671-9352.0.2023.342

   

On the properties of S-hyperlattice ideals

LIU Ni, CUI Panpan   

  1. School of Mathematics and Statistics, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Published:2025-02-14

Abstract: In this paper, the properties of S-hyperlattice ideals are explored. It is proved that the direct product of S-hyperlattice ideals of two S-hyperlattices is an S-hyperlattice ideal of their direct product, the homomorphic image and preimage of S-hyperlattice ideal are still S-hyperlattice ideals, the set of all S-hyperlattice ideals of an S-hyperlattice is an algebraic topped meet structure. It is illustrated that for an S-hyperlattice congruence, the congruence class of the smallest element zero is generally not an S-hyperlattice ideal, and a sufficient condition for it to be an S-hyperlattice ideal is given. While for an S-hyperlattice ideal, a maximal S-hyperlattice congruence with it as a congruence class is constructed.

Key words: hyperlattice, S-hyperlattice, S-hyperlattice ideal, S-hyperlattice congruence, meet structure

CLC Number: 

  • O153.1
[1] MARTY F. Sur une generalization de la notion de groupe[C] //Proceedings of 8th Congress Mathematiciens Scandenaves. Stockholm, Sweden:[s.n.] , 1934:45-49.
[2] ROSARIA R. Hyperaffine planes over hyperrings[J]. Discrete Mathematics, 1966, 155:215-223.
[3] XIN Xiaolong. Hyper BCI-algebras[J]. Discussiones Mathematicae General Algebra and Applications, 2006, 26(1):5-19.
[4] CORSINI P, LEOREANU-FOTEA V. Applications of hyperstructure theory[M]. Dordrecht: Kluwer, 2003.
[5] AL-TAHAN M, DAVVAZ B. Algebraic hyperstructures associated to biological inheritance[J]. Mathematical Biosciences, 2017, 285:112-118.
[6] DAVVAZ B, NEZAD A D, MAZLOUM-ARDAKANI M. Chemical hyperalgebra: redox reactions[J]. MATCH-Communications in Mathematical and in Computer Chemistry, 2014, 71(2):323-331.
[7] DEHGHAN NEZHAD A, MOOSAVI NEJAD S M, NADJAFIKHAH M, et al. A physical example of algebraic hyperstructures: Leptons[J]. Indian Journal of Physics, 2012, 86:1027-1032.
[8] KONSTANINIDOU M, MITTAS J. An introduction to the theory of hyperlattices[J]. Math Balkanica, 1977, 7: 187-193.
[9] 郭效芝,辛小龙. 超格[J]. 纯粹数学与应用数学, 2004, 20(1):40-43. GUO Xiaozhi, XIN Xiaolong. Hyperlattice[J]. Pure and Applied Mathematics, 2004, 20(1):40-43.
[10] ZHAO Bin, HAN Shengwei. The ideal on hyperlattices[J]. Fuzzy Systems and Mathematics, 2008, 22(4):44-51.
[11] KOGUEP B B N, LELE C. On hyperlattices: congruence relations, ideals and homomorphism[J]. Afrika Matematika, 2019, 30(1-2):101-111.
[12] 韩胜伟,赵彬. 分配超格[J]. 西北大学学报(自然科学版),2005,35(2):125-129. HAN Shengwei, ZHAO Bin. Distributive hyperlattices[J].Journal of Northwest University(Natural Science), 2005, 35(2):125-129.
[13] SOLTANI LASHKENARI A, DAVVAZ B. Complete join hyperlattices[J]. Indian Journal of Pure and Applied Mathematics, 2015, 46:633-645.
[14] JAKUBÍK J. On strong superlattices[J]. Mathematica Slovaca, 1994, 44(2):131-138.
[15] HEIDARI D, DAVVAZ B. On ordered hyperlattices[J]. University Politehnica of Bucharest Scientifific Bulletin(Series A: Applied Mathematics and Physics), 2011, 73(2):85-96.
[16] RAHNAMAI BARGHI A. The prime ideal theorem for distributive hyperlattices[J]. Italian Journal of Pure and Applied Mathematics, 2001, 10: 75-78.
[17] KOGUEP B B N, NKUIMI C, LELE C. On fuzzy ideals of hyperlattice[J]. International Journal of Algebra, 2008, 2(15): 739-750.
[18] 刘绍学. 近世代数基础[M]. 2版. 北京:高等教育出版社,2012. LIU Shaoxue. Foudation of mordern algebra[M]. 2nd. Beijing: Higher Education Press, 2012.
[19] 章璞,吴泉水.基础代数学讲义[M]. 北京: 高等教育出版社,2018. ZHANG Pu, WU Quanshui. Lectures on basic algebra[M]. Beijing: Higher Education Press, 2018.
[20] BULMAN-FLEMING S, MAHMOUDI M. The category of S-posets[J]. Semigroup Forum, 2005, 71:443-461.
[21] LUO Congwen. S-Lattice congruences of S-Lattices[J]. Academy of Mathematics and Systems Science, 2012(19):465-472.
[22] 温燕,罗从文. 格半群的表示和S-格[J]. 三峡大学学报(自然科学版),2007,29(5):467-469. WEN Yan, LUO Congwen. The representation of lattice ordered semigroups and S-lattices[J]. Journal of China Three Gorges University(Natural Sciences), 2007, 29(5):467-469.
[23] 李敏. 偏序超半群中的若干问题研究[D]. 江门: 五邑大学,2018. LI Min. Studies on some topics of partially ordered hypersemigroups[D]. Jiangmen: Wuyi University, 2018.
[24] 高连飞. 超序结构中的若干问题研究[D]. 江门: 五邑大学,2020. GAO Lianfei. Studies on some topics of hyperordered structures[D]. Jiangmen: Wuyi University, 2020.
[25] DAVEY B A, PRIESTLEY H A. Introduction to lattices and order[M]. New York: Cambridge University Press, 2002.
[1] Ling WANG,Bin ZHAO. Sub-Z-Quantales and their properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 76-83.
[2] Shaohui LIANG,Xueting ZHANG,Xiaogang XIA. Special elements, ideals in involutive m-semilattices and its categorical properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 1-8.
[3] LIU Chun-hui, ZHANG Hai-yan, LI Yu-mao. Lattice of bipolar fuzzy ideals in negative non-involutive residuated lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 29-35.
[4] DUAN Jing-yao. Topological properties analysis of logical metric spaces on the residuated lattice [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 9-16.
[5] . Representative forms of commutative BR0-algebras on a set by implication operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 86-94.
[6] LIU Chun-hui. On(∈,∈∨q(λ, μ))-fuzzy LI-ideals in lattice implication algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 65-72.
[7] WANG Hai-wei, ZHAO Bin. The projective objects in the category of Q-sup-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 73-82.
[8] LIU Chun-hui. Lattice of(,∨(-overq))-fuzzy filters in a BL-algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 104-110.
[9] LIANG Shao-hui. The category of E-quantales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 47-53.
[10] LU Jing, ZHAO Bin. The projective objects in the category of fuzzy quantales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 47-54.
[11] LIU Chun-hui. Fuzzy ultra ⊙-ideals in regular residuated lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 87-94.
[12] LIU Chun-hui. Theory of interval valued (∈,∈∨ q)-fuzzy filters in BL-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 83-89.
[13] LIANG Shao-Hui, DIAO Ban. Resarches on some properties of a strong FS-Poset [J]. J4, 2009, 44(8): 51-55.
[14] LIU Chun-hui1,2. Interval valued (∈,∈∨ q)fuzzy subalgebras of Boolean algebras [J]. J4, 2013, 48(10): 94-98.
[15] GAO Ya, WU Hong-bo. Closure elements and closure sets in topological systems and their related properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 30-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!