JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (2): 1-8.doi: 10.6040/j.issn.1671-9352.0.2023.342
LIU Ni, CUI Panpan
CLC Number:
[1] MARTY F. Sur une generalization de la notion de groupe[C] //Proceedings of 8th Congress Mathematiciens Scandenaves. Stockholm, Sweden:[s.n.] , 1934:45-49. [2] ROSARIA R. Hyperaffine planes over hyperrings[J]. Discrete Mathematics, 1966, 155:215-223. [3] XIN Xiaolong. Hyper BCI-algebras[J]. Discussiones Mathematicae General Algebra and Applications, 2006, 26(1):5-19. [4] CORSINI P, LEOREANU-FOTEA V. Applications of hyperstructure theory[M]. Dordrecht: Kluwer, 2003. [5] AL-TAHAN M, DAVVAZ B. Algebraic hyperstructures associated to biological inheritance[J]. Mathematical Biosciences, 2017, 285:112-118. [6] DAVVAZ B, NEZAD A D, MAZLOUM-ARDAKANI M. Chemical hyperalgebra: redox reactions[J]. MATCH-Communications in Mathematical and in Computer Chemistry, 2014, 71(2):323-331. [7] DEHGHAN NEZHAD A, MOOSAVI NEJAD S M, NADJAFIKHAH M, et al. A physical example of algebraic hyperstructures: Leptons[J]. Indian Journal of Physics, 2012, 86:1027-1032. [8] KONSTANINIDOU M, MITTAS J. An introduction to the theory of hyperlattices[J]. Math Balkanica, 1977, 7: 187-193. [9] 郭效芝,辛小龙. 超格[J]. 纯粹数学与应用数学, 2004, 20(1):40-43. GUO Xiaozhi, XIN Xiaolong. Hyperlattice[J]. Pure and Applied Mathematics, 2004, 20(1):40-43. [10] ZHAO Bin, HAN Shengwei. The ideal on hyperlattices[J]. Fuzzy Systems and Mathematics, 2008, 22(4):44-51. [11] KOGUEP B B N, LELE C. On hyperlattices: congruence relations, ideals and homomorphism[J]. Afrika Matematika, 2019, 30(1-2):101-111. [12] 韩胜伟,赵彬. 分配超格[J]. 西北大学学报(自然科学版),2005,35(2):125-129. HAN Shengwei, ZHAO Bin. Distributive hyperlattices[J].Journal of Northwest University(Natural Science), 2005, 35(2):125-129. [13] SOLTANI LASHKENARI A, DAVVAZ B. Complete join hyperlattices[J]. Indian Journal of Pure and Applied Mathematics, 2015, 46:633-645. [14] JAKUBÍK J. On strong superlattices[J]. Mathematica Slovaca, 1994, 44(2):131-138. [15] HEIDARI D, DAVVAZ B. On ordered hyperlattices[J]. University Politehnica of Bucharest Scientifific Bulletin(Series A: Applied Mathematics and Physics), 2011, 73(2):85-96. [16] RAHNAMAI BARGHI A. The prime ideal theorem for distributive hyperlattices[J]. Italian Journal of Pure and Applied Mathematics, 2001, 10: 75-78. [17] KOGUEP B B N, NKUIMI C, LELE C. On fuzzy ideals of hyperlattice[J]. International Journal of Algebra, 2008, 2(15): 739-750. [18] 刘绍学. 近世代数基础[M]. 2版. 北京:高等教育出版社,2012. LIU Shaoxue. Foudation of mordern algebra[M]. 2nd. Beijing: Higher Education Press, 2012. [19] 章璞,吴泉水.基础代数学讲义[M]. 北京: 高等教育出版社,2018. ZHANG Pu, WU Quanshui. Lectures on basic algebra[M]. Beijing: Higher Education Press, 2018. [20] BULMAN-FLEMING S, MAHMOUDI M. The category of S-posets[J]. Semigroup Forum, 2005, 71:443-461. [21] LUO Congwen. S-Lattice congruences of S-Lattices[J]. Academy of Mathematics and Systems Science, 2012(19):465-472. [22] 温燕,罗从文. 格半群的表示和S-格[J]. 三峡大学学报(自然科学版),2007,29(5):467-469. WEN Yan, LUO Congwen. The representation of lattice ordered semigroups and S-lattices[J]. Journal of China Three Gorges University(Natural Sciences), 2007, 29(5):467-469. [23] 李敏. 偏序超半群中的若干问题研究[D]. 江门: 五邑大学,2018. LI Min. Studies on some topics of partially ordered hypersemigroups[D]. Jiangmen: Wuyi University, 2018. [24] 高连飞. 超序结构中的若干问题研究[D]. 江门: 五邑大学,2020. GAO Lianfei. Studies on some topics of hyperordered structures[D]. Jiangmen: Wuyi University, 2020. [25] DAVEY B A, PRIESTLEY H A. Introduction to lattices and order[M]. New York: Cambridge University Press, 2002. |
[1] | Ling WANG,Bin ZHAO. Sub-Z-Quantales and their properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(6): 76-83. |
[2] | Shaohui LIANG,Xueting ZHANG,Xiaogang XIA. Special elements, ideals in involutive m-semilattices and its categorical properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(4): 1-8. |
[3] | LIU Chun-hui, ZHANG Hai-yan, LI Yu-mao. Lattice of bipolar fuzzy ideals in negative non-involutive residuated lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 29-35. |
[4] | DUAN Jing-yao. Topological properties analysis of logical metric spaces on the residuated lattice [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 9-16. |
[5] | . Representative forms of commutative BR0-algebras on a set by implication operator [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 86-94. |
[6] | LIU Chun-hui. On(∈,∈∨q(λ, μ))-fuzzy LI-ideals in lattice implication algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 65-72. |
[7] | WANG Hai-wei, ZHAO Bin. The projective objects in the category of Q-sup-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 73-82. |
[8] | LIU Chun-hui. Lattice of(,∨(-overq))-fuzzy filters in a BL-algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 104-110. |
[9] | LIANG Shao-hui. The category of E-quantales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 47-53. |
[10] | LU Jing, ZHAO Bin. The projective objects in the category of fuzzy quantales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(02): 47-54. |
[11] | LIU Chun-hui. Fuzzy ultra ⊙-ideals in regular residuated lattices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 87-94. |
[12] | LIU Chun-hui. Theory of interval valued (∈,∈∨ q)-fuzzy filters in BL-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 83-89. |
[13] | LIANG Shao-Hui, DIAO Ban. Resarches on some properties of a strong FS-Poset [J]. J4, 2009, 44(8): 51-55. |
[14] | LIU Chun-hui1,2. Interval valued (∈,∈∨ q)fuzzy subalgebras of Boolean algebras [J]. J4, 2013, 48(10): 94-98. |
[15] | GAO Ya, WU Hong-bo. Closure elements and closure sets in topological systems and their related properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 30-36. |
|