JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2026, Vol. 61 ›› Issue (1): 85-93.doi: 10.6040/j.issn.1671-9352.0.2024.035

Previous Articles     Next Articles

Fuzzy rough set model based on type-2 fuzzy preorders

ZHANG Guangxu1, YAO Wei2   

  1. 1. School of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, Jiangsu, China;
    2. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
  • Published:2026-01-15

Abstract: Based on the fundamental structure of type-2 fuzzy preorders, fuzzy rough sets are investigated, and a pair of fuzzy upper and lower approximation operators are defined. Furthermore, their properties and interrelations are explored. It is shown that upper definable sets and lower definable sets are equivalent. Definable sets form a stratified Alexandrov fuzzy topology such that the upper and lower approximation operators are the related closure and interior operators respectively.

Key words: type-2 fuzzy preorder, fuzzy rough set, fuzzy upper/lower approximation operator, definable set, Alexandrov fuzzy topology

CLC Number: 

  • O181
[1] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356.
[2] BELOHLAVEK R. Fuzzy relational systems: foundations and principles[M]. New York: Kluwer Academic Publishers, 2002: 1-5.
[3] 刘清,黄兆华,刘少辉,等. 带Rough算子的决策规则及数据挖掘中的软计算[J]. 计算机研究与发展,1999,36:800-804. LIU Qing, HUANG Zhaohua, LIU Shaohui, et al. Decision rules with rough operator and soft computing of data mining[J]. Journal of Computer Research and Development, 1999, 36:800-804.
[4] CIUCCI D E, CATTANEO G. Algebraic structures for rough sets[J]. Transactions on Rough Sets II, 2004, 3135:208-252.
[5] SKOWRON A, STEPANIUK J. Tolerance approximation spaces[J]. Fundamenta Informaticae, 1996, 27(2/3):245-253.
[6] SLOWINSKI R, VANDERPOOTEN D. A generalized definition of rough approximations based onsimilarity[J]. IEEE Transactions on Knowledge and Data Engineering, 2000, 12(2):331-336.
[7] BONIKOWSKI Z, BRYNIARSKI E, WYBRANIEC-SKARDOWSKA U. Extensions and intentions in the rough settheory[J]. Information Sciences, 1998, 107(1/4):149-167.
[8] ZAKOWSKI W. Approximations in the space(u,p)[J]. Demonstratio Mathematica, 1983, 16(3):761-769.
[9] 米据生,吴伟志,张文修. 粗糙集的构造与公理化方法[J]. 模式识别与人工智能,2002,15(3):280-284. MI Jusheng, WU Weizhi, ZHANG Wenxiu. Constructive and axiomatic approaches of the theory of rough sets[J]. Pattern Recognition and Artificial Intelligence, 2002, 15(3):280-284.
[10] DUBOIS D, PRADE H. Rough fuzzy sets and fuzzy roughsets[J]. International Journal of General Systems, 1990, 17(2/3):191-209.
[11] LIU Guilong. The axiomatization of the rough set upper approximation operations[J]. Fundamenta Informaticae, 2006, 69(3):331-342.
[12] WU Weizhi, MI Jusheng, ZHANG Wenxiu. Generalized fuzzy rough sets[J]. Information Sciences, 2003, 151:263-282.
[13] RADZIKOWSKA A M. On lattice-based fuzzy rough sets[M] //CORNELIS C G, DESCHRIJVER M, NACHTEGAEL S, et al. Years of Fuzzy Set Theory. Berlin: Springer, 2010:107-126.
[14] RADZIKOWSKA A M, KERRE EE. Fuzzy rough sets based on residuated lattices[J]. Lecture Notes in Computer Science, 2005, 3135:278-296.
[15] SHE Yanhong, WANG Guojun. An axiomatic approach of fuzzy rough sets based on residuated lattices[J]. Computers and Mathematics with Applications, 2009, 58(1):189-201.
[16] DENG Tingquan, CHEN Yanmei, XU Wenli, et al. A novel approach to fuzzy rough sets based on a fuzzy covering[J]. Information Sciences, 2007, 177(11):2308-2326.
[17] FENG Tao, ZHANG Shaopu, MI Jusheng. The reduction and fusion of fuzzy covering systems based on the evidence theory[J]. International Journal of Approximate Reasoning, 2012, 53(1):87-103.
[18] LI T J, LEUNG Y, ZHANG W X. Generalized fuzzy rough approximation operators based on fuzzy coverings[J]. International Journal of Approximate Reasoning, 2008, 48(3):836-856.
[19] DEER L, CORNELIS C, GODO L. Fuzzy neighborhood operators based on fuzzy coverings[J]. Fuzzy Sets and Systems, 2017, 312:17-35.
[20] YAO Wei, SHE Yanhong, LU Lingxia. Metric-based L-fuzzy rough sets: approximation operators and definable sets[J]. Knowledge-Based Systems, 2019, 163:91-102.
[21] YAO Wei, ZHANG Guangxu, ZHOU Changjie. Real-valued hemimetric-based fuzzy rough sets and an application to contour extraction of digital surfaces[J]. Fuzzy Sets and Systems, 2023, 459:201-219.
[22] GOUBAULT-LARRECQ J. Non-Hausdorff topology and domain theory[M]. Cambridge: Cambridge University Press, 2013: 1-10.
[23] ZADEH L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971, 3(2):177-200.
[24] YAO Wei, ZHANG Guangxu, SHI Yi. Type-2 lattice-valued preorders: a common framework of lattice-valued preorders and various kinds of metrics[J]. Iranian Journal of Fuzzy Systems, 2023, 20(3):191-203.
[25] ZHANG Guangxu, YAO Wei. Fuzzy rough sets based on modular hemimetrics[J]. Soft Computing, 2023, 27:4393-4401.
[26] ZHANG Guangxu, YAO Wei. Fuzzy rough sets based on Morsi fuzzy hemimetrics[J]. Hacettepe Journal of Mathematics and Statistics, 2024, 53(1):107-120.
[27] 杨俊. 基于乘除法的模糊预序型模糊粗糙集[D]. 南京:南京信息工程大学,2023. YANG Jun. Fuzzy preorder based fuzzy rough sets using multiplication and division[D]. Nanjing: Nanjing University of Information Science and Technology, 2023.
[28] KLEMENT E P, MESIAR R, PAP E. Triangular norms[M]. Dordrecht: Kluwer Academic Publishers, 2000.
[29] 张小红,裴道武,代建华. 模糊数学与Rough集理论[M]. 北京:清华大学出版社,2013:116. ZHANG Xiaohong, PEI Daowu, DAI Jianhua. Fuzzy mathematics and rough sets theroy[M]. Beijing: Tsinghua University Press, 2013:116.
[30] DEER L, CORNELIS C, YAO Y Y. A semantically sound approach to Pawlak rough sets and covering-based rough sets[J]. International Journal of Approximate Reasoning, 2016, 78(11):62-72.
[31] RALEVIC N M, KARAKLIC D, PIŠTINJAT N. Fuzzy metric and its applications in removing the imagenoise[J]. Soft Computing, 2019, 23(22):12049-12061.
[1] . Fuzzy rough c-means based on the knowledge measure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2026, 61(1): 49-64.
[2] LI Xinru, LI Lingqiang, JIA Chengzhao. Novel multi-granularity variable precision(*,·)-fuzzy rough set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(7): 131-142.
[3] WU Fan, KONG Xiangzhi. Fuzzy β-covering rough set model based on fuzzy information system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 10-16.
[4] XIONG Xing-guo, LU Ling-xia. MV-algebra valued metric-based fuzzy rough sets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(11): 81-89.
[5] LI Ling-qiang, LI Qing-guo. The characterizations of lattice-valued fuzzy lower approximation operators by a unique axiom [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 78-82.
[6] LU Xiao-yun1, YANG Yong 2. A one-direction S-fuzzy rough set and its application [J]. J4, 2011, 46(8): 110-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Yu, WANG Gui-jun*. Structures of DISO fuzzy system induced by a class of#br# regular implication operators[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 57 -63 .
[2] JIANG Wei,GAO Zan,ZHU Kong-feng . An improved autofocusing algorithm[J]. J4, 2006, 41(5): 119 -123 .
[3] FU Hai-yan,LU Chang-jing,SHI Kai-quan . (F,F-)-law inference and law mining[J]. J4, 2007, 42(7): 54 -57 .
[4] ZHANG Xing-qiu,ZHONG Qiu-yan .

Positive solutions for singular m-point boundary value problems in a Banach space

[J]. J4, 2008, 43(9): 51 -56 .
[5] HU Ming-Di, SHE Yan-Hong, WANG Min. Topological properties of  three-valued   logic  metric space[J]. J4, 2010, 45(6): 86 -90 .
[6] LIANG Shao-Hui, DIAO Ban. Resarches on some properties of a strong FS-Poset[J]. J4, 2009, 44(8): 51 -55 .
[7] GAO Shan-Lin, LI Jian, RUAN Xiao-Jia. A method for ranking fuzzy numbers based on the ideal points[J]. J4, 2009, 44(8): 86 -89 .
[8] DONG Jun, WEI Jie. On a generalization of α-reversible rings[J]. J4, 2009, 44(8): 62 -67 .
[9] LI Shan-ping,FU Jing,HU Zhen . Preparation and characterization of Y doped Ti/Sb2O5-SnO2
electro-catalytic electrodes
[J]. J4, 2008, 43(9): 22 -26 .
[10] YU Xiu-qing, .

The generation of P-rough integrals and their characteristics

[J]. J4, 2008, 43(10): 67 -70 .