JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (3): 91-97.doi: 10.6040/j.issn.1671-9352.1.2015.083

Previous Articles     Next Articles

A news App popular comment prediction framework based on event detection

LI Xi-peng1, 2, GUO Yan1,ZHAO Ling1, ZHANG Ru-qing1,2, LIU Yue1, YU Xiao-ming1, CHENG Xue-qi1*   

  1. 1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;
    2.University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2015-09-25 Online:2016-03-20 Published:2016-04-07

Abstract: A framework based on event detection is proposed to do popular comments prediction in news Apps. Taking advantage of the aggregation of news Apps, the problem of sparse data for a single news App is avoided. Also, in this framework, events are detected as the context of comments to solve the cold-start problem; components are loosely coupled, which means it can adapt all kinds of granularity of events. We provide an instance of this framework and it turns out that using the event detection strategy mentioned above, the sparse data problem no longer exists. Whats more, the framework brings a better prediction result than using the comment itself.

Key words: hot comment, prediction, event, news App

CLC Number: 

  • TP393
[1] ALLAN J, CARBONELL J G, DODDINGTON G, et al. Topic detection and tracking pilot study final report[J]. Proceedings of DARPA Broadcast News Transcription and Understanding Workshop. San Franciscu: Morgan Kaufmann Publishers, 1998: 194-218.
[2] LANDAUER T K, FOLTZ P W, LAHAM D. An introduction to latent semantic analysis[J]. Discourse Processes, 1998, 25(2-3):259-284.
[3] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791.
[4] BLEI D M, NG A Y, JORDAN M I. Latent dirichletallocation[J]. The Journal of Machine Learning Research, 2003, 3:993-1022.
[5] BLEI D M, LAFFERTY J D. Dynamic topic models[C] // Proceedings of the 23rd International Conference on Machine Learning. New York: ACM Press, 2006: 113-120.
[6] WANG Y, AGICHTEIN E, BENZI M. Tm-lda: efficient online modeling of latent topic transitions in social media[C] // Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2012: 123-131.
[7] HE Q, CHANG K, LIM E P, et al. Keep it simple with time: a reexamination of probabilistic topic detection models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10):1795-1808.
[8] VACA C K, MANTRACH A, JAIMES A, et al. A time-based collective factorization for topic discovery and monitoring in news[C] // Proceedings of the 23rd International Conference on World Wide Web. New York: ACM Press, 2014: 527-538.
[9] 徐涛.基于神经网络的BBS热点话题预测方法研究[D].杭州:杭州电子科技大学,2010.
[10] 戴臻.布谷鸟算法优化支持向量机的网络热点话题预测[J].计算机应用与软件,2014,(4):330-333. DAI Zhen. Internet hot topic prediction based on support vector machine optimised by cuckoo search algorithm[J]. Computer Applications and Software, 2014,(4):330-333.
[11] TONG H, LIU Y, PENG H, et al. Internet users' psychosocial attention prediction: Web hot topic prediction based on adaptive AR model[C] // Proceedings of the International Conference on Computer Science and Information Technology. Washington: IEEE Computer Society, 2008: 458-462.
[12] 李玉梅.基于互联网评论的股票市场趋势预测[D].哈尔滨:哈尔滨工业大学,2012.
[13] 李雪妮.基于评论情感和自回归模型的销量预测研究[D].大连:大连理工大学,2013.
[14] 聂卉.基于内容分析的用户评论质量的评价与预测[J].图书情报工作,2014(13):83-89. NIE Hui. Content-oriented evaluation and detection for product reviews[J]. Library and Information Service, 2014(13):83-89.
[15] 张跃伟.基于微博客话题的热点预测及传播溯源[D]. 北京:北京邮电大学, 2014.
[16] FISCUS J G, DODDINGTON G R. Topic detection and tracking evaluation overview[M]. New York: Springer, 2002: 17-31.
[1] YE Xiao-ming, CHEN Xing-shu, YANG Li, WANG Wen-xian, ZHU Yi, SHAO Guo-lin, LIANG Gang. Anomaly detection model of host group based on graph-evolution events [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 1-11.
[2] ZHANG Fan, LUO Cheng, LIU Yi-qun, ZHANG Min, MA Shao-ping. User preference prediction in heterogeneous search environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 26-34.
[3] LIN Li. News event extraction based on kernel dependency graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 121-126.
[4] PENG Qiu-fang, LIU Yang. Research of gender prediciton based on SVM with E-commerce data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(7): 74-80.
[5] DONG Ke, LÜ Wen-yuan, WANG Yong-zhi. Optimal preventive maintenance policy for second-hand equipment under lease considering residual value [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 95-102.
[6] ZHU Meng-jun,JIANG Hong-xun*,XU Wei. Weibo moods and propagation factors based stock prices prediction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 13-25.
[7] LIU Lian-xin, HE Wei-ping, LIU Yu, JIN Yong. QSPR study on thermodynamic properties of resveratrol analogues [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 79-87.
[8] HE Xin-hua, HU Wen-fa, XIAO Min. Coordination optional contract mechanism of service supply chain for emergencies [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 81-90.
[9] LI Feng-huan, ZHENG De-quan, ZHAO Tie-jun. Temporal recognition for topic event based on shallow semantic parsing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 74-80.
[10] XU Xia, LI Pei-feng, ZHENG Xin, ZHU Qiao-ming. Event inference for semi-supervised Chinese event extraction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 12-17.
[11] LI Ling1, CHENG Guo-qing1, TANG Ying-hui2. Optimal inspection and replacement policy for a shock model with preventive repair [J]. J4, 2011, 46(9): 122-126.
[12] DING Chao1, 2, YUAN Chang-an1, 3, QIN Xiao1, 3. A prediction algorithm for multi-data streams  based on GEP [J]. J4, 2010, 45(7): 50-54.
[13] DING Ran, LI Qi-Qiang, LIANG Tao. Short-term scheduling formulation with decomposition structurefor multi-purpose batch plants [J]. J4, 2010, 45(1): 73-79.
[14] JIAO Tie-Ke. The eventually regularity on a class subsemirings of a semiring [J]. J4, 2009, 44(8): 56-57.
[15] . Application of the combination prediction model in forecasting the GDP of China [J]. J4, 2009, 44(2): 56-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!