JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2015, Vol. 50 ›› Issue (04): 8-13.doi: 10.6040/j.issn.1671-9352.0.2014.240
Previous Articles Next Articles
YE Jian-hua, MA Ming
CLC Number:
[1] 李泽慧.与Poisson流有关的几个概率分布及其在城市交通拥挤问题中的应用[J]. 兰州大学学报:自然科学版,1984,S1:127-136. LI Zehui. Some distributions related to Poisson processes and their application in solving the problem of traffic jam[J]. Journal of Lanzhou University: Natural Sciences, 1984, S1:127-136. [2] 李泽慧,黄宝胜,王冠军.一种冲击源下冲击模型的寿命分布及其性质[J]. 兰州大学学报:自然科学版,1999,35(4):1-7. LI Zehui, HUANG Baosheng, WANG Guanjun. Life distribution and its properties of shock models under random shocks[J]. Journal of Lanzhou University: Natural Sciences, 1999, 35(4):1-7. [3] 李泽慧,白建明,孔新兵.冲击模型的研究进展[J]. 质量与可靠性,2005(3):31-36. LI Zehui, BAI Jianming, KONG Xinbing, et al. Progress of research on shock models[J]. Quality and Reliability, 2005(3):31-36. [4] 李泽慧,白建明,孔新兵.冲击模型:进展与应用[J]. 数学进展,2007,36(4):385-397. LI Zehui, BAI Jianming, KONG Xingbing. Shock models: advances and applications[J]. Advances in Mathematics China, 2007, 36(4):385-397. [5] 梁小林, 李泽慧.对偶δ-冲击模型的最优更换策略[C]//中国现场统计研究会第12届学术年会论文集.北京:[s.n.], 2005:211-214. LIANG Xiaolin, LI Zehui. Optimal replacement policy of antithetic δ shock model[C]//Proceedings of the 12th Symposium of Chinese Field Statistical Research. Beijing:[s.n.], 2005:211-214. [6] TANG Yayong, LAM Yeh. A δ-shock maintenance model for a deteriorating system[J]. European Journal of Operational Research, 2006, 168(2):541-556. [7] BAI Jianming, LI Zehui, KONG Xingbing. Generalized shock models based on a cluster point process[J]. IEEE Transactions on Reliability, 2006, 55(3):542-550. [8] 唐亚勇,林埜.退化系统的对数正态δ冲击维修模型(英文)[J]. 四川大学学报:自然科学版,2006,43(1):59-65. TANG Yayong, Lam Yeh. A lognormal δ shock maintenance model for a deteriorating system (in English)[J]. Journal of Sichuan University: Natural Science Edition, 2006, 43(1):59-65. [9] LI Zehui, KONG Xingbing. Life behavior of δ-shock model[J]. Statistics & Probability Letters, 2007, 77(6):577-587. [10] LI Zehui, ZHAO Peng. Reliability analysis on the δ-shock model of complex systems[J]. IEEE Transactions on Reliability, 2007, 56(2):340-348. [11] 梁小林,李泽慧.可修系统的最优更换策略[J]. 湖南师范大学自然科学学报,2007,30(4):15-18. LIANG Xiaolin, LI Zehui. Optimal replacement policies for repairable system[J]. Journal of Natural Science of Hunan Normal University, 2007, 30(4):15-18. [12] 唐风琴,李泽慧.时倚泊松过程下的对偶δ-冲击模型[J]. 兰州大学学报:自然科学版,2007,43(4):1-4. TANG Fengqin, LI Zehui. Dual δ-shock models under time-dependent Poisson process[J]. Journal of Lanzhou University:Natural Sciences, 2007, 43(4):1-4. [13] 李泽慧,刘志,牛一.一般δ-冲击模型中无失效数据的Bayes统计推断[J]. 应用概率统计,2007,23(1):51-58. LI Zehui, LIU Zhi, NIU Yi. Bayes statistical inference on general δ-shock model with zero failure data[J]. Chinese Journal of Applied Probability, 2007, 23(1):51-58. [14] 梁小林,李泽慧.遭受外部冲击的检测模型[J]. 湖南大学学报:自然自科版,2008, 35(2):66-69. LIANG Xiaolin, LI Zehui. Random inspection model subject to external shocks[J]. Journal of Hunan University: Natural Sciences, 2008, 35(2):66-69. [15] 马明.δ冲击模型寿命分布的积分计算及M函数的性质[J]. 山东大学学报:理学版,2008,43(12):15-19. MA Ming. Computation of the integral of lifetime distribution in δ-shock model and properties of M function[J]. Journal of Shandong University: Naturnal Science, 2008, 43(12):15-19. [16] 马明.自激滤过的泊松过程[J]. 吉林大学学报:自然科学版,2009,47(4):711-715. MA Ming. Self-exciting filtered Poisson process[J]. Journal of Jilin University: Science Edition, 2009, 47(4):711-715. [17] 魏艳华,王丙参. δ冲击模型及随机检测[J]. 北京联合大学学报:自然科学版,2011,25(1):89-92. WEI Yanhua, WANG Bingcan. δ shock model and random inspection[J]. Journal of Beijing Union University: Natural Sciences, 2011, 25(1):89-92. [18] Serkan Eryilmaz. On the lifetime behavior of discrete time shock model[J]. Journal of Computational and Applied Mathematics, 2013, 237(1):384-388. [19] 冶建华,马明,赵芬芬,等,离散δ冲击模型的寿命性质[J]. 西北民族大学学报:自然科学版,2012,33(3):1-4. YE Jianhua, MA Ming, ZHAO Fenfen, et al. Lifetime properties of discrete δ shock model[J]. Journal of Northwest University for Nationalities: Natural Science, 2012, 33(3):1-4. [20] 何雪,冶建华,陈丽雅.冲击间隔服从泊松分布的离散δ冲击模型的可靠性分析[J]. 贵州师范大学学报:自然科学版,2012,30(6):65-68. HE Xue, YE Jianhua, CHEN Liya. The reliability analysis of the δ shock model based on interarrival time follows Poisson distribution[J]. Journal of Guizhou Normal University: Natural Sciences, 2012, 30(6):65-68. [21] 张攀,马明,余进玉,等.时间点服从0-1分布的离散截断δ冲击模型的寿命性质[J]. 甘肃联合大学学报:自然科学版,2012,26(5):24-26. ZHANG Pan, MA Ming, YU Jinyu, et al. Lifetime behavior of discrete censored δ shock model on arrival times obey the 0-1 distribution[J]. Journal of Gansu Lianhe University: Natural Sciences, 2012, 26(5):24-26. [22] 卢开澄,卢华明.组合数学[M]. 3版.北京:清华大学出版社,2002. LU Kaicheng, LU Huaming. Combinatorial mathematics[M]. 3rd ed. Beijing: Tsinghua University Press, 2002. |
[1] | HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41. |
[2] | DIAO Qun, SHI Dong-yang. New H 1-Galerkin mixed finite element analysis for quasi-linear viscoelasticity equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 90-98. |
[3] | NONG Qiang, HUANG Zhen-jie, HUANG Ru-fen. Improvement of a certificateless aggregate signature scheme [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 52-59. |
[4] | FAN Ming-zhi, WANG Fen-ling, SHI Dong-yang. High accuracy analysis of the lowest order new mixed finite element scheme for generalized nerve conductive equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 78-89. |
[5] | LU Sheng-rong, TANG Ji-hua. Dynamic generation of stretching-shrinking data and data submerging and hiding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(05): 40-44. |
[6] | WU Dai-yong, ZHANG Hai. Stability and bifurcation analysis for a single population discrete model with Allee effect and delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 88-94. |
[7] | ZHANG Ya-dong1, LI Xin-xiang2, SHI Dong-yang3. Superconvergence analysis of a nonconforming finite element for #br# strongly damped wave equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 28-35. |
[8] | DENG Xiong, HU Lin*, ZHAO Chuang, GAO Li-ke. Numerical simulation of direct shear tests for granular matter in 3D#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 22-26. |
[9] | CHEN Nai-xun1, MA Shu-ping2*. Static output feedback stabilization for a class of nonlinear discrete-time descriptor Markov jump systems [J]. J4, 2013, 48(7): 93-100. |
[10] | SHI Yan-hua1, SHI Dong-yang2*. The quasi-Wilson nonconforming finite element approximation to pseudo-hyperbolic equations [J]. J4, 2013, 48(4): 77-84. |
[11] | ZHANG Fang-guo. Elliptic curves in cryptography: past, present and future… [J]. J4, 2013, 48(05): 1-13. |
[12] | ZHANG Hua-ping1,2, ZHANG Jian-peng3, MA Shu-ping4, FAN Hong-da1. Robust H∞ filter design for discrete-time singular switched systems with uncertainties and time-varying delays [J]. J4, 2012, 47(7): 59-69. |
[13] | XU Huai. Discrete approximation of the optimal dividend barrier in the dual risk model [J]. J4, 2012, 47(5): 115-121. |
[14] | WEI Li1, ZHANG Huan-shui1*, FU Min-yue2. Finite-horizon quantized estimation using sector bound approach [J]. J4, 2012, 47(1): 55-61. |
[15] | ZHANG Hua-ping1,2, MA Shu-ping3, FAN Hong-da1. Robust stabilization for uncertain discrete-time Markov jump descriptor systems with time-varying delays via output feedback controllers [J]. J4, 2012, 47(1): 62-71. |
|