JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (4): 1-6.doi: 10.6040/j.issn.1671-9352.0.2017.480
CHEN Ai-yun1, XUE Qiong1*, CHEN Huan-huan1, XIAO Xiao-feng2
CLC Number:
[1] ABRESCH U. Lower curvature bounds, Toponogovs theorem, and bounded topology I[J]. Annales Scientifiques De L École Normale Supérieure, 1985, 18(4):651-670. [2] ABRESCH U. Lower curvature bounds, Toponogovs theorem,and bounded topology Ⅱ[J]. Annales Scientifiques De L École Normale Supérieure, 1987, 20(3):475-502. [3] ZHU Shunhui. A volume comparison theorem for manifolds with asymptotically nonnegative curvature and its applications[J]. American Journal of Mathematics, 1994, 116(3):669-682. [4] ABRESCH U, GROMOLL D. On complete manifolds with nonnegative Ricci curvature[J]. Journal of the American Mathematical Society, 1990, 3(2):355-374. [5] MAHAMAN B. Open manifolds with asymptotically nonnegative curvature[J]. Illinois Journal of Mathematics, 2005, 49(3):705-717. [6] HU Zisheng, XU Senlin. Complete manifolds with asymptotically nonnegative Ricci curvature and weak bounded geometry[J]. Archiv Der Mathematik, 2007, 88(5):455-467. [7] SANTOS L, NEWTON L. Manifolds with asymptotically nonnegative minimal radial curvature[J]. Advances in Geometry, 2007, 7(3):331-355. [8] YEGANEFAR N. Topological finiteness for asymptotically nonnegatively curved manifolds[J]. Mathematics, 2009, 108(1):109-134. [9] ZHANG Yuntao. Open manifolds with asymptotically nonnegative Ricci curvature and large volume growth[J]. Proceedings of the American Mathematical Society, 2015, 143(18):4913-4923. [10] MAHAMAN B. Topology of manifolds with asymptotically nonnegative Ricci curvature[J]. African Diaspora Journal of Mathematics, 2015, 18(2):11-17. [11] SHEN Zhongmin. Complete manifolds with nonnegative Ricci curvature and large volume growth[J]. Inventiones Mathematicae, 1996, 125(3):393-404. [12] MACHIGASHIRA Y. Complete open manifolds of non-negative radial curvature[J]. Pacific Journal of Mathematics, 1994, 165(1):153-160. [13] CHEEGER J. Critical points of distance functions and applications to geometry[M]. Berlin:Springer, 1991:1-38. [14] MAHAMAN B. A volume comparison theorem and number of ends for manifolds with asymptotically nonnegative Ricci curvature[J]. Revista Matemática Complutense, 2000, 13(2):399-409. [15] SHA Jiping, SHEN Zhongmin.Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity[J]. American Journal of Mathematics, 1997, 119(6):1399-1404. |
[1] | HE Guo-qing, ZHANG Liang, LIU Hai-rong. Chen-Ricci inequalities for submanifolds of generalized Sasakian space forms with a semi-symmetric metric connection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 56-63. |
[2] | WEN Hai-yan, LIU Jian-cheng. Space-like submanifolds with constant scalar curvature in the pseudo-Riemannian space forms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 89-96. |
[3] | DENG Yi-hua. Estimates for the Hessian of f-harmonic functions and their applications to splitting theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 83-86. |
[4] | LIU Xu-dong, PAN Xu-lin, ZHANG Liang. Inequalities for Casorati curvatures of submanifolds in a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 55-59. |
[5] | HE Chao, LI Ying, SONG Wei-dong. On the 2-harmonic timelike submanifolds in locally symmetric pseudo-riemannian manifolds [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 54-58. |
[6] | SU Man, ZHANG Liang. Two results on Chens inequalities for spacelike submanifolds of a pseudo-Riemannian space form [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 59-64. |
[7] | LI Ying, SONG Wei-dong. On pseudo-umbilical timelike submanifold in a de Sitter space [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 64-67. |
[8] | PAN Xu-lin, ZHANG Pan, ZHANG Liang. Inequalities for Casorati curvatures of submanifolds in a riemannian manifold of quasi-constant curvature [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 84-87. |
[9] | LIU Min, SONG Wei-dong. Totally real minimal submanifolds in quasi-complex projective space [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 71-75. |
|