JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (11): 9-17.doi: 10.6040/j.issn.1671-9352.0.2018.345

•   • Previous Articles     Next Articles

Hierarchically porous Au-Cu thin films as catalysts for aerobic oxidation of benzyl alcohol

Shu-ren HE(),Bin TANG,Xin-feng XING,Chun-ying SHI,Xiu-mei ZHANG,Xiao-mei ZHANG,Xiao-hong XU*()   

  1. School of Chemical and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
  • Received:2018-06-14 Online:2018-11-01 Published:2018-11-14
  • Contact: Xiao-hong XU E-mail:15154125052@163.com;xhxu@sdu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(21176144);国家自然科学基金资助项目(21472117)

Abstract:

Hierarchically porous Au-Cu thin films (HPAFs) fabricated on Au-Cu alloy wire surface by an alloying/dealloying process are reported, which exhibit superior catalytic performance for benzyl alcohol aerobic oxidation. The porous structure is composed of large-sized ligament channels (several micrometers) coupled with small-sized ligament pores (tens of nanometers), which interpenetrate in the big architecture. The morphology and composition of HPAFs can be easily tailored by altering electrodeposition, pretreatment and corrosion conditions. The characterization reveals that Cu residue in Au-rich ligament created an Au dominated AuCu(alloy)-CuOx heterostruture, which is highly active for molecular oxygen activation and favorable for benzyl alcohol aerobic oxidation. Furthermore, the surface thin-layer hierarchically porous structure of HPAFs enables the decrease in the internal diffusion resistance, and therefore further improves their catalytic performance where the pore diffusion is the rate-limiting step.

Key words: surface hierarchical porous structure, alloying/dealloying, Au-Cu, synergistic catalytic effect, benzyl alcohol aerobic oxidation

CLC Number: 

  • O643.3

Fig.1

Schematic illustration of the fabrication process of HPAFs"

Fig.2

SEM images of as-prepared HPAFs materials"

Fig.3

XRD patterns of the (a) original, (b) annealed and (c) dealloyed Au-Cu alloy wire (HPAFs-9 h)"

Table 1

The atomic ratio of Au/Cu in the HPAFs surface obtained from XPS analysis"

HPAFs催化剂 HPAFs-1/6 h HPAFs-1 h HPAFs-9 h HPAFs-24 h
Au/Cu原子比 92:8 94:6 95:5

Fig.4

XPS spectra of Au 4f in HPAFs- 1/6 h, 1 h, 9 h and 24 h"

Fig.5

XPS spectra of Cu in HPAFs-1/6 h (a), 1 h (b), 9 h (c) and 24 h (d)"

Fig.6

C-V curves recorded in N2-saturated 0.5 M H2SO4 for (a) the original alloy wire, (b) the first cycle and (c) the stable state of HPAFs-9 h; (d) the first cycle and (e) the stable state of HPAFs-24 h sample. Scan rate=20 mV/s."

Fig.7

The catalytic performances of HPAFs catalysts with different dealloyed time for benzyl alcohol oxidation(The tests were conducted at a constant O2/alcohol ratio of 1.05 at 280 ℃. The total flow rate of feed gas (N2+O2) is 44 mL/min, the feed rate of benzyl alcohol is 0.36 mmol/min, and 20 mg catalyst was used. The solid symbols represent the conversion and the circle symbols represent the selectivity)"

Fig.8

SEM images of HPAFs-9 h after reaction for 7 h at 280 ℃"

Fig.9

The effect of oxygen content in the feed gas on the benzyl alcohol oxidation over HPAFs-9 h(The tests were carried out at 240 ℃, using 20 mg catalyst with the total gas flow rate of 44 mL/min and a benzyl alcohol flow rate of 0.36 mmol/min)"

Fig.10

The dependency of reaction rate on benzyl alcohol concentration over HPAFs-9 h catalyst(The tests were conducted with a constant oxygen content of 10% (vol) at 240 ℃ using 10 mg catalyst)"

1 XU C X , SU J X , XU X H , et al. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc, 2007, 129 (1): 42- 43.
doi: 10.1021/ja0675503
2 ZIELASEK V , JVRGENS B , SCHULZ C , et al. Gold catalysts: nanoporous gold foams[J]. Angew Chem Int Ed, 2006, 45 (48): 8241- 8244.
doi: 10.1002/(ISSN)1521-3773
3 WITTSTOCK A , ZIELASEK V , BIENER J , et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature[J]. Science, 2010, 327 (5963): 319- 322.
doi: 10.1126/science.1183591
4 LI Z W , XU J L , GU X H , et al. Selective gas-phase oxidation of alcohols over nanoporous silver[J]. Chem Cat Chem, 2013, 5 (7): 1705- 1708.
5 HE L , HUANG Y , WANG A , et al. H2 production by selective decomposition of hydrous hydrazine over Raney Ni catalyst under ambient conditions[J]. AIChE J, 2013, 59 (11): 4297- 4302.
doi: 10.1002/aic.v59.11
6 ZHANG J , LIU P , MA H , et al. Nanostructured porous gold for methanol electro-oxidation[J]. J Phys Chem C, 2007, 111 (28): 10382- 10388.
doi: 10.1021/jp072333p
7 ZEIS R , MATHUR A , FRITZ G , et al. Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells[J]. J Power Sources, 2007, 165 (1): 65- 72.
8 CHEN L Y , CHEN N , HOU Y , et al. Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells[J]. ACS Catal, 2013, 3 (6): 1220- 1230.
doi: 10.1021/cs400135k
9 GE X , CHEN L , KANG J , et al. A core-shell nanoporous Pt-Cu catalyst with tunable composition and high catalytic activity[J]. Adv Funct Mater, 2013, 23 (33): 4156- 4162.
doi: 10.1002/adfm.v23.33
10 WITTSTOCK A , NEUMANN B , SCHAEFER A , et al. Nanoporous Au: an unsupported pure gold catalyst?[J]. J Phys Chem C, 2009, 113 (14): 5593- 5600.
doi: 10.1021/jp808185v
11 YIN H M , ZHOU C Q , XU C X , et al. Aerobic oxidation of d-glucose on support-free nanoporous gold[J]. J Phys Chem C, 2008, 112 (26): 9673- 9678.
doi: 10.1021/jp8019864
12 HAN D Q , XU T T , SU J X , et al. Gas-phase selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over unsupported nanoporous gold[J]. Chem Cat Chem, 2010, 2 (4): 383- 386.
13 WANG D S , LI Y D . Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications[J]. Adv Mater, 2011, 23 (9): 1044- 1060.
doi: 10.1002/adma.201003695
14 JIANG H L , XU Q . Recent progress in synergistic catalysis over heterometallic nanoparticles[J]. J Mater Chem, 2011, 21 (36): 13705- 13725.
doi: 10.1039/c1jm12020d
15 SANKAR M , DIMITRATOS N , MIEDZIAK P J , et al. Designing bimetallic catalysts for a green and sustainable future[J]. Chem Soc Rev, 2012, 41 (24): 8099- 8139.
doi: 10.1039/c2cs35296f
16 YUAN Z Y , SU B L . Insights into hierarchically meso-macroporous structured materials[J]. J Mater Chem, 2006, 16 (7): 663- 677.
doi: 10.1039/B512304F
17 CHEN L H , LI X Y , ROOKE J C , et al. Hierarchically structured zeolites: synthesis, mass transport properties and applications[J]. J Mater Chem, 2012, 22 (34): 17381- 17403.
doi: 10.1039/c2jm31957h
18 ZHOU Z , ZENG T , CHENG Z , et al. Diffusion-enhanced hierarchically macro-mesoporous catalyst for selective hydrogenation of pyrolysis gasoline[J]. AIChE J, 2011, 57 (8): 2198- 2206.
doi: 10.1002/aic.v57.8
19 DING Y , ERLEBACHER J . Nanoporous metals with controlled multimodal pore size distribution[J]. J Am Chem Soc, 2003, 125 (26): 7772- 7773.
doi: 10.1021/ja035318g
20 DU M , ZHANG H , LI Y , et al. Fabrication and wettability of monolithic bimodal porous Cu with Gasar macro-pores and dealloying nano-pores[J]. Appl Surf Sci, 2015, 353: 804- 810.
doi: 10.1016/j.apsusc.2015.07.020
21 DU M , ZHANG H , LI Y , et al. Synthesis of a bimodal porous Cu with nanopores on the inner surface of Gasar pores: Influences of preparation conditions[J]. Appl Surf Sci, 2016, 360: 148- 156.
doi: 10.1016/j.apsusc.2015.11.033
22 BRACEY C L , ELLIS P R , HUTCHINGS G J . Application of copper-gold alloys in catalysis: current status and future perspectives[J]. Chem Soc Rev, 2009, 38 (8): 2231- 2243.
doi: 10.1039/b817729p
23 WANG A Q , LIU X Y , MOU C Y , et al. Understanding the synergistic effects of gold bimetallic catalysts[J]. J Catal, 2013, 308: 258- 271.
doi: 10.1016/j.jcat.2013.08.023
24 PINA C D , FALLETTA E , ROSSI M . Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold-copper catalyst[J]. J Catal, 2008, 260: 384- 386.
doi: 10.1016/j.jcat.2008.10.003
25 LI W J , WANG A Q , LIU X Y , et al. Silica-supported Au-Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols[J]. Appl Catal A, 2012, 433/434: 146- 151.
doi: 10.1016/j.apcata.2012.05.014
26 BAUER J C , VEITH G M , ALLARD L F , et al. Silica-supported Au-CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol[J]. ACS Catal, 2012, 2 (12): 2537- 2546.
doi: 10.1021/cs300551r
27 BELIN S , BRACEY C L , BRIOIS V , et al. CuAu/SiO2 catalysts for the selective oxidation of propene to acrolein: the impact of catalyst preparation variables on material structure and catalytic performance[J]. Catal Sci Technol, 2013, 3 (11): 2944- 2957.
doi: 10.1039/c3cy00254c
28 ZHAO G , HU H , DENG M , et al. Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols[J]. Green Chem, 2011, 13 (1): 55- 58.
doi: 10.1039/C0GC00679C
29 JIA Q Q , ZHAO D F , TANG B , et al. Synergistic catalysis of Au-Cu/TiO2-NB nanopaper in aerobic oxidation of benzyl alcohol[J]. J Mater Chem A, 2014, 2 (38): 16292- 16298.
doi: 10.1039/C4TA01503G
30 XING X F , HAN D Q , WU Y F , et al. Fabrication and electrochemical property of hierarchically porous Au-Cu films[J]. Mater Lett, 2012, 71: 108- 110.
doi: 10.1016/j.matlet.2011.12.056
31 WAGNER C D , RIGGS W M , DAVIS L E , et al. Handbook of X-ray photoelectron spectroscopy[M]. Minnesota: Perkin-Elmer Corporation, 1979: 82- 83.
32 ZELEKEW O A , KUO D H . Facile synthesis of SiO2@ CuxO@ TiO2 heterostructures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants[J]. Appl Surf Sci, 2017, 393: 110- 118.
doi: 10.1016/j.apsusc.2016.10.016
33 FUJITA T , GUAN P , MCKENNA K , et al. Atomic origins of the high catalytic activity of nanoporous gold[J]. Nat Mater, 2012, 11 (9): 775- 780.
doi: 10.1038/nmat3391
34 FOGLER H S . Elements of chemical reaction engineering[M]. 4th ed New Jersey: Pearson Education Inc, 2006: 839.
35 KIM D H , LIM M S . Kinetics of selective CO oxidation in hydrogen-rich mixtures on Pt/alumina catalysts[J]. Appl Catal A, 2002, 224 (1/2): 27- 38.
36 CONTE M , MIYAMURA H , KOBAYASHI S , et al. Spin trapping of Au-H intermediate in the alcohol oxidation by supported and unsupported gold catalysts[J]. J Am Chem Soc, 2009, 131 (20): 7189- 7196.
doi: 10.1021/ja809883c
[1] SUN Yan-lin,ZHOU Chuan-jian* and ZHAO Shi-gui . Systhesis of mesoporous organosilicas using a new kind of carbosilane dendrimers as a silica resource [J]. J4, 2007, 42(5): 38-43 .
[2] LI Shan-ping,FU Jing,HU Zhen . Preparation and characterization of Y doped Ti/Sb2O5-SnO2
electro-catalytic electrodes
[J]. J4, 2008, 43(9): 22-26 .
[3] WANG Zhen-hua,ZHU Chen-fu*,DONG Hou-huan,CAI Yuan-xing . Preparation,characterization and photo-catalysis of TiO2 nanoparticles co-doped with nitrogen and plumbum [J]. J4, 2007, 42(9): 25-29 .
[4] QI Gui-bin,LIU Qing-yang,BEI Yi-ling*,LIU lei . Thermal degradation kinetics of three kinds of poly-saccharide [J]. J4, 2007, 42(7): 19-21 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .