JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (11): 18-25, 34.doi: 10.6040/j.issn.1671-9352.0.2018.031

•   • Previous Articles     Next Articles

Release of the antifoulant in equilibrium swollen polymer: molecular dynamics simulation

Dong-cai CHENG1,2(),Zhi-xiong HUNAG1,*(),Run-tao REN2,Jing-jing WANG2,Zhang-ji YE2,Liang ZHANG3,Yue-ping WANG2   

  1. 1. Technology & Key Laboratory of Special Functional Materials of the Ministry of Education, Wuhan University of Technology, Wuhan 430070, Hubei, China
    2. Science and Technology on Marine Corrosion and Protection Laboratory, Xiamen 361101, Fujian, China
    3. NeoTrident Company, Shanghai 200237, China
  • Received:2018-01-23 Online:2018-11-01 Published:2018-11-14
  • Contact: Zhi-xiong HUNAG E-mail:cdch102504@vip.163.com;Zhixiongh@whut.edu.cn
  • Supported by:
    国家自然科学基金资助项目(51173141);工信部高技术船舶项目

Abstract:

To investigate the release of the antifouling molecules in equilibrium swelling (ES) states, molecular dynamics (MD) simulation was performed to analyze the diffusion of 4, 5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) molecule in P(MMA-co-n-BMA) immersed in water. The glass transition temperature (Tg) was simulated in the dry and equilibrium swelling states, and the dynamics of water and the pendant groups in the ES state were investigated, as well as the influence of water content on the local dynamics of water. The diffusion mechanisms of DCOIT were also analyzed. Tg values of three P(MMA-co-n-BMA)s in the ES state are from 14.84, 17.27 K to 21.73 K lower than in the dry state. Water has the higher mobility than the pendant groups by approx. 2 orders of magnitude in ES systems and has dynamic properties on the same level as those of bulk water. The diffusion of a large-mass penetrant can be controlled effectively with water and Tg as the crucial factors, and the diffusion ability of DCOIT is significantly enhanced when the swollen matrix is in the rubbery state.

Key words: antifoulant, molecular dynamics, equilibrium swelling, glass transition temperature, mean-square displacement

CLC Number: 

  • TQ630.1

Table 1

Parameter of the periodic models in ES states"

项目 30:70 40:60 50:50
相对分子质量 12 959.70 12 538.60 12 117.50
吸水率/% 26.31 27.12 27.37
水分子个数 257 260 253

Fig.1

3D structure of the equilibrium swollen P(MMA-co-n-BMA)"

Fig.2

Comparison of Tg for the dry/swollen matrixes (a: The temperature dependence of the specific volume of the dry/swollen matrixes for M50B50. The intersection point of the two lines resulting from a linear regression of the data points corresponding to the glassy and the rubbery state determines the simulated glass transition temperature. To avoid overlap between the curves, the curve in the dry matrix is offset by 0.30 cm3/g)"

Table 2

Comparison of Tg values obtained via two methods"

MMA:n-BMA比率Tg/K
干态 溶胀态
模拟计算 Fox方程计算 模拟计算
30:70 319.98 315.60 298.26
40:60 325.11 323.60 307.84
50:50 329.73 331.90 314.89

Fig.3

The plot of log(MSD) vs. log(time) for the diffusion of water molecules in three ES systems(To avoid overlapping between the curves, the x axis of the MSD curve for M50B50 is moved right by 0.20, and the x axis of the MSD curve for M30B70 is moved left by 0.20)"

Table 3

Self-diffusion coefficients of water and the side chains"

MMA:n-BMA比率 温度/K自扩散系数/10-5(cm2·s-1)
聚合物链段
278 0.736 0.000 5
50:50 293 0.813 0.001 2
308 1.226 0.002 8
278 1.230 0.004 7
40:60 293 1.680 0.003 4
308 2.447 0.008 9
278 1.108 0.005 7
30:70 293 1.799 0.007 5
308 2.574 0.012 5

Table 4

Dynamics of waters categorized to BW, LW and FW in different swollen systems"

含水量/% 水分子个数比率/% 自扩散系数/10-5(cm2·s-1)
束缚水 弱束缚水 自由水 束缚水 弱束缚水 自由水
4.27 30 66.67 33.33 0.00 0.048 0.017
12.95 100 30.00 50.00 20.00 1.600 1.942 2.022
19.87 167 26.00 48.00 26.00 0.603 1.497
27.63 253 24.68 40.26 35.06 2.563 2.005
30.86 300 20.00 37.78 42.22 1.092 2.962

Fig.4

Max one-dimension displacements of DCOIT molecules from their initial positions at 278, 293, 308 K (a). The right figure (b) is the one-dimension displacements of DCOIT molecules for dry matrix."

Table 5

Comparison of the diffusion coefficient of DCOIT molecules in swollen matrix"

MMA:n-BMA比率 温度/K 自扩散系数/10-6(cm2·s-1)
278 0.102
50:50 293 0.074
308 0.190
278 0.027
40:60 293 0.164
308 0.196
278 0.108
30:70 293 0.224
308 0.313
1 DIEGO M Y , SØREN K , KIM D J . Antifouling technology: past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 5 (2): 75- 104.
2 叶章基, 陈珊珊, 马春风, 等. 新型环保海洋防污材料研究进展[J]. 表面技术, 2017, 46 (12): 62- 70.
YE Zhangji , CHEN Shanshan , MA Chunfeng , et al. Development of novel environment-friendly antifouling materials[J]. Surface Technology, 2017, 46 (12): 62- 70.
3 LARS N , ATTA A A , MARIAM M , et al. Molecular release from painted surfaces: free and encapsulated biocides[J]. Progress in Organic Coatings, 2010, 69 (1): 45- 48.
doi: 10.1016/j.porgcoat.2010.05.002
4 赵相宽, 白秀琴, 袁成清. 绿色生物防污剂及控制释放技术研究进展[J]. 舰船科学技术, 2017, 39 (1): 6- 11.
doi: 10.3404/j.issn.1672-7619.2017.01.002
ZHAO Xiangkuan , BAI Xiuqin , YUAN Chengqing . Progress in green biological antifoulant and controlled release technologies[J]. Ship Science and Technology, 2017, 39 (1): 6- 11.
doi: 10.3404/j.issn.1672-7619.2017.01.002
5 ANYAOGU K C , FEDOROV A V , NECKERS D C . Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles[J]. Langmuir, 2008, 24 (8): 4340- 4346.
doi: 10.1021/la800102f
6 NORDSTIERNA L , ABDALLA A A , NORDIN M , et al. Comparison of release behaviour from microcapsules and microspheres[J]. Progress in Organic Coatings, 2010, 69 (1): 49- 51.
doi: 10.1016/j.porgcoat.2010.05.003
7 汪小伟, 尹卫平, 付玉彬, 等. 镀铜微管对防污剂的控制释放性能[J]. 材料开发与应用, 2005, 20 (1): 19- 22.
doi: 10.3969/j.issn.1003-1545.2005.01.006
WANG Xiaowei , YIN Weiping , FU Yubin , et al. Controlled release of antifouling agent in copper metalized tubules[J]. Development and Application of Materials, 2005, 20 (1): 19- 22.
doi: 10.3969/j.issn.1003-1545.2005.01.006
8 汪小伟, 时清亮, 付玉彬. 铜微球对防污剂异噻唑酮的控释作用[J]. 精细化工, 2007, 24 (10): 944- 947.
doi: 10.3321/j.issn:1003-5214.2007.10.003
WANG Xiaowei , SHI Qingliang , FU Yubin . Performance of controlledrelease of isothiazoline antifouling agent in coppermicrospheres[J]. Fine Chemicals, 2007, 24 (10): 944- 947.
doi: 10.3321/j.issn:1003-5214.2007.10.003
9 汪小伟, 付玉彬, 张经纬, 等. 纳米钛酸管对防污剂异噻唑酮的控释作用[J]. 精细化工, 2007, 24 (3): 213- 216.
doi: 10.3321/j.issn:1003-5214.2007.03.002
WANG Xiaowei , FU Yubin , ZHANG Jingwei , et al. Performance of controlled release of antifouling agent in nanotubes of titanic acid[J]. Fine Chemicals, 2007, 24 (3): 213- 216.
doi: 10.3321/j.issn:1003-5214.2007.03.002
10 史航, 石建高, 陈晓蕾, 等. 包埋苯甲酸钠微球的制备及在海洋防污涂料中的抑菌研究[J]. 高分子通报, 2011, 1 (1): 9- 12.
SHI Hang , SHI Jiangao , CHEN Xiaolei , et al. Preparation of encapsulated sodium benzoate and antibacterial application in marine antifouling coating[J]. Polymer Bulletin, 2011, 1 (1): 9- 12.
11 VRENTAS J S , DUDA J L . Diffusion in polymer-solvent systems Ⅰ. Reexamination of the free-volume theory[J]. J Polym Sci Part B Poly Phys, 1977, 15 (3): 403- 416.
doi: 10.1002/pol.1977.180150302
12 VRENTAS J S , DUDA J L . .Diffusion in polymer—solvent systems Ⅱ. A predictive theory for the dependence of diffusioncoefficients on temperature, concentration, and molecular weight[J]. J Polym Sci Part B Poly Phys, 1977, 15 (3): 417- 439.
doi: 10.1002/pol.1977.180150303
13 ARUZZI S. Diffusion of small molecules in polymeric glasses: a modelling approach[D]. Boston: Massachusetts Institute of Technology, 1990.
14 GUSEV A A , ARIZZI S , SUTER U W . Dynamics of light gases in rigid matrices of dense polymers[J]. J Chem Phys, 1993, 99 (3): 2221- 2227.
doi: 10.1063/1.465283
15 HWANG S T . Fundamentals of membrane transport[J]. Korean J Chem Eng, 2011, 28 (1): 1- 15.
doi: 10.1007/s11814-010-0493-z
16 崔青, 张长桥, 修建新, 等. 稠油沥青质胶质降粘机理的分子动力学模拟[J]. 山东大学学报(工学版), 2017, 47 (2): 123- 129.
CUI Qing , ZHANG Changqiao , XIU Jianxin . Molecular dynamic simulation on the mechanism of viscosity reduction to asphaltene and resin in heavy oil[J]. Journal of Shandong University(Engineering Science), 2017, 47 (2): 123- 129.
17 石静, 吕凯, 苑世领. 支链烷基苯磺酸盐在油水界面的分子动力学模拟[J]. 山东大学学报(工学版), 2012, 42 (2): 77- 82.
SHI Jing , LYU Kai , YUAN Shiling . Molecular dynamics simulation of alkyl benzene sulfonate at the oil-water interface[J]. Journal of Shandong University(Engineering Science), 2012, 42 (2): 77- 82.
18 SUN H . Compass: an abinitioforce-field optimized for condensed-phase applications overview with details on alkane and benzene compounds[J]. J Phys Chem B, 1998, 102 (38): 7338- 7364.
doi: 10.1021/jp980939v
19 CHENG Dongcai , HUANG Zhixiong , YE Zhangji , et al. Study of the equilibrium swelling of poly(methyl methacrylate-co-n-butyl methacrylate) immersed in water via MD simulation[J]. Chemical Engineering Science, 2017, 173: 483- 492.
doi: 10.1016/j.ces.2017.08.007
20 BERENDSEN H J C , GRIGERA J R , STRAATSMA T P . The missing term in effective pair potentials[J]. J Phys Chem, 1987, 91 (24): 6269- 6271.
doi: 10.1021/j100308a038
21 EWALD P P . Dieberechnungoptischer und elektrostatischergitterpotentiale[J]. Ann Phys, 1921, 369 (3): 253- 287.
22 SMITH W . A replicated data molecular dynamics strategy for the parallel Ewaldsum[J]. Comput Phys Commun, 1991, 67 (3): 392- 406.
23 VERLET L . Computer "experiments" on classical fluids i: thermodynamical properties of lennard-jones molecules[J]. Phys Rev, 1967, 159 (98): 98- 104.
24 O'SULLIVAN C , BRAYJD . Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme[J]. Engineering Computations, 2004, 21 (2/4): 278- 303.
25 EHSAN G , MATTIAS H , KARL K , et al. Atomistic simulation of the shape-memory effect in dry and water swollen poly[(rac-ladtide)-co-glycolide] and copolymer urethanes thereof[J]. Macromol Chem Phy, 2014, 215 (1): 65- 75.
doi: 10.1002/macp.201300507
26 TUNG K L , LU K T . Effect of tacticity of PMMA on gas transport through membranes: MD and MC simulation studies[J]. Journal of Membrane Science, 2006, 272 (1-2): 37- 49.
doi: 10.1016/j.memsci.2005.07.028
27 ALLEN M P , TILDESLEY D J . Computer simulation of liquids[M]. Oxford: Oxford University Press, 1989: 78.
28 FOX T G . Influence of diluent and of copolymer composition on the glass temperature of a polymer system[J]. Bull Am Phys Soc, 1956, 1: 123- 132.
29 SMITH L S A , SCHMITZ V . The effect of water on the glass transitiontemperature of poly(methyl methacrylate)[J]. Polymer, 1988, 29 (10): 1871- 1878.
doi: 10.1016/0032-3861(88)90405-3
30 LEE S H . Molecular dynamics simulation study of the ionic mobility of OH-using the OSS2 model[J]. Bull Korean ChemSoc, 2006, 27 (8): 1154- 1158.
doi: 10.5012/bkcs.2006.27.8.1154
31 WU C F , XU W J . Atomistic simulation study of absorbed water influence on structure and properties of crosslinked epoxy resin[J]. Polymer, 2007, 48 (18): 5440- 5448.
doi: 10.1016/j.polymer.2007.06.038
32 JHON M S , ANDRADE J D . Water and hydrogels[J]. J Biomed Mater Res, 1973, 7 (6): 509- 522.
doi: 10.1002/(ISSN)1097-4636
33 SHINGO U , JUN I , AKIRA T . Molecular dynamic simulation of swollen membrane of perfluorinated ionomer[J]. J Phys Chem B, 2005, 109 (9): 4269- 4278.
doi: 10.1021/jp046434o
34 SUN Delin , ZHOU Jian . Effect of water content on microstructures and oxygen permeation in PSiMA-IPN-PMPC hydrogel: a molecular simulation study[J]. Chemical Engineering Science, 2012, 78: 236- 245.
doi: 10.1016/j.ces.2011.11.020
35 SMIT E , MULDER M H V , SMOLDERS C A , et al. Modelling of the diffusion of carbon dioxide in polyimide matrices by computer simulation[J]. J Membrane Sci, 1992, 73 (2/3): 247- 257.
[1] PAN Long-qiang1,2, GENG Cun-liang1, MU Yu-guang3, LIU Xin4, HU Yi5, PAN Jing-shan4, ZHOU Ya-bin2, GONG Bin5, WANG Lu-shan1*. Deployment and optimization of biomacromolecule molecular dynamics simulation process on hundred trillion times cluster [J]. J4, 2012, 47(7): 14-19.
[2] LU Min,LUO Fei,LIU Wei-qing,WEI Wang-he . Molecular dynamics simulation on the structural stability of the Ag nanorod with [111] crystallographic orientation [J]. J4, 2008, 43(1): 43-48 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[5] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[6] YANG Lun, XU Zheng-gang, WANG Hui*, CHEN Qi-mei, CHEN Wei, HU Yan-xia, SHI Yuan, ZHU Hong-lei, ZENG Yong-qing*. Silence of PID1 gene expression using RNA interference in C2C12 cell line[J]. J4, 2013, 48(1): 36 -42 .
[7] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[8] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[9] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[10] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .