JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (7): 113-116.doi: 10.6040/j.issn.1671-9352.0.2018.341

Previous Articles    

Covariance of the marked process of censored δ-shock model

YE Jian-hua*, ZHENG Ying, LIU Hua   

  1. Institute of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, Gansu, China
  • Published:2019-06-27

Abstract: Based on the study of covariance of self-excited filtering Poisson process, the explicit expression of covariance of the marked process of censored δ shock model is derived, which extends the theory of δ-shock model.

Key words: filtered Poisson process, shock model, covariance, self-exciting

CLC Number: 

  • O211.6
[1] MA M, LI Z H. Life behavior of censored δ-shock model[J]. Indian Journal of Pure and Applied Mathematics, 2010, 41(2):401-420.
[2] BAI J P, MA M, YANG Y W. Parameter estimation of the censored δ-shock model on uniform interval[J]. Communications in Statistics-Theory and Methods, 2017, 46(14):6936-6946.
[3] 冶建华,马明. 一般离散开型截断δ冲击模型的寿命分布[J]. 山东大学学报(理学版), 2015, 50(4):8-13, 19. YE Jianhua, MA Ming. Lifetime distribution behavior of discrete open censored δ-shock model[J]. Journal of Shandong University(Natural Science), 2015, 50(4):8-13, 19.
[4] MA M, LI Z H, CHEN J Y. Phase-type distribution of customer relationship with Markovian response and marketing expenditure decision on the customer lifetime value[J]. European Journal of Operational Research, 2008, 187(1):313-326.
[5] 马明.自激滤过的泊松过程[J].吉林大学学报(理学版),2009,47(4):711-716. MA Ming. Self-exciting filtered Poisson process[J]. Journal of Jilin University(Science Edition), 2009, 47(4):711-716.
[6] 郑莹, 马明. 自激滤过的泊松过程的二阶矩[J]. 山东大学学报(理学版), 2013, 48(9): 35-39, 45. ZHENG Ying, MA Ming. Second moment of self-exciting filter poisson process[J]. Journal of Shandong University(Natural Science), 2013, 48(9):35-39, 45.
[7] 陈昊君,郑莹,马明,等.自激滤过泊松过程的协方差[J].山东大学学报(理学版),2018,53(12):75-79,89. CHEN Haojun, ZHENG Ying, MA Ming, et al.The covariance of self-exciting filtered Poisson process[J].Journal of Shandong University(Natural Science), 2018, 53(12):75-79, 89.
[8] 邓永录.随机点过程及其应用[M].北京:科学出版社,1992. DENG Yonglu. Stochastic point process and its application[M]. Beijing: Science Press, 1992.
[9] 马明. δ冲击模型寿命分布的积分计算及M函数的性质[J]. 山东大学学报(理学版), 2008, 43(12):15-19. MA Ming. Computation of the integral of lifetime distribution in the δ-shock model and the properties of the M function[J]. Journal of Shandong University(Natural Science), 2008, 43(12):15-19.
[1] MA Ming, BIAN Li-na, LIU Hua. Low order moments of self-excited filtered Poisson processes based on joint distribution of event points [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 55-58.
[2] CHEN Hao-jun, ZHENG Ying, MA Ming, BIAN Li-na, LIU Hua. Covariance of self-exciting filtered Poisson process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 75-79.
[3] YE Jian-hua, MA Ming. Lifetime distribution behavior of discrete open censored δ-shock model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 8-13.
[4] ZHENG Ying, MA Ming*. Second moment of selfexciting filter poisson process [J]. J4, 2013, 48(09): 35-39.
[5] LI Ling1, CHENG Guo-qing1, TANG Ying-hui2. Optimal inspection and replacement policy for a shock model with preventive repair [J]. J4, 2011, 46(9): 122-126.
[6] MA Ming. Computation of the integral of lifetime distribution in the δ-shock model and the properties of the M function [J]. J4, 2008, 43(12): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!