JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (10): 40-48.doi: 10.6040/j.issn.1671-9352.0.2019.157

Previous Articles    

Existence of positive solution for a class of N-Kirchhoff type equation

CHEN Lin   

  1. College of Mathematics and Statistics, Yili Normal University, Yining 835000, Xinjiang, China
  • Published:2019-10-12

Abstract: This paper studies the existence of positive solution for a class of N-Kirchhoff type problem whose nonlinearity depends on the gradient of the solution. Applying a variational method and an iterative technique, the analysis proves that the problem has at least one positive week solution.

Key words: N-Kirchhoff equation, N-Kirchhoff problem, gradient term, mountain pass theorem, iterative method

CLC Number: 

  • O175.2
[1] MOMONIAT E, HARLEY C. An implicit series solution for a boundary value problem modelling a thermal explosion[J]. Math Comput Modelling, 2011, 53(1/2):249-260.
[2] PEEBLES P J E. Star distribution near a collapsed object[J]. Astrophysical Journal, 1972, 178(2):371-376.
[3] SHAO Zhiqiang. The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation[J]. Z Angew Math Phys, 2018, 69(2):1-44.
[4] AMANN H, CRANDALL M G. On some existence theorems for semi-linear elliptic equations[J]. Indiana Univ Math J, 1978, 27(5):779-790.
[5] FERIA L F O, MIYAGAKI O H, MOTREANU D, et al. Existence results for nonlinear elliptic equations with Leray-Lions operator and dependence on the gradient[J]. Nonlinear Anal, 2014, 96:154-166.
[6] POHOZAEV S. On equations of the type Δu=f(x,u,Du)[J]. Mat Sb, 1980, 113(2):324-338.
[7] KIRCHHOFF G. Mechanik[M]. Leipzig, Germany: Teubner, 1883.
[8] LIONS J L. On some questions in boundary value problems of mathematical physics[C] // JANEIRO R. International Symposium on Continuum, Mechanics and Partial Differential Equations. Amsterdam: North-Holland, 1978: 284-346.
[9] FIGUEIREDO D D, GIRARDI M, MATZEU M. Semilinear elliptic equations with dependence on the gradient via mountain-pass techniques[J]. Differ Integ Eq, 2004, 17(2):119-126.
[10] FIGUEIREDO G M. Quasilinear equations with dependence on the gradient via mountain pass techniques in RN[J]. Applied Mathematics and Computations, 2008, 203(1):14-18.
[11] FREITAS L R D. Mutiplicity of solutions for a class of quasilinear equations with exponential critical growth[J]. Nonlinear Anal, 2014, 95:607-624.
[12] DÍAZ J I. Nonlinear partial differential equations and free boundaries: elliptic equations(Vol.I)[M]. Boston: Res Notes Math, 1985.
[13] DOÓ J M, MEDEIROS E, SEVERO U. On a quasilinear nonhomogeneous elliptic equation with critical growth in RN[J]. J Differential Equations, 2009, 246(4):1363-1386.
[14] TRUDINGER N. On imbedding into Orlicz space and some applications[J]. J Math Mech, 1967, 17(3):473-484.
[15] DO Ó J M, MEDEIROS E S. Remarks on least energy solutions for quasilinear elliptic problems in RN[J]. Electron J Differential Equations, 2003(83):1-14.
[16] BERESTYCKI H, LIONS P L. Nonlinear scalar field equations I: existence of ground state[J]. Arch Rational Mech Anal, 1983, 82(4):313-346.
[17] DO Ó J M,SOUZA M D, MEDEIROS E D, et al. Critical points for a functional involving critical growth of Trudinger-Moser type[J]. Potential Anal, 2015, 42(1):229-246.
[18] AMBROSETTI A, RABINOWITZ P H. Dual variational methods in critical point theory and applications[J]. J Funct Anal, 1973, 14(4):349-381.
[19] DIBENEDETTO E. C1 local regularity of weak solutions of degenerate elliptic equations[J]. Nonlinear Anal, 1983, 7(8):827-850.
[1] LIU Wen-yue, SUN Tong-jun. Iterative non-overlapping domain decomposition method for optimal boundary control problems governed by elliptic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 21-28.
[2] CHEN Zhi-hui, WANG Zhen-zhen, CHENG Yong-kuan*. Soliton solutions for quasilinear Schrdinger equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 58-62.
[3] YANG Zhao-qiang. A kind of European lookback option pricing model under fractional  jump-diffusion mixed fractional Brownian motion [J]. J4, 2013, 48(6): 67-74.
[4] XUE Qiu-fang1,2, GAO Xing-bao1*, LIU Xiao-guang1. Several equivalent conditions for H-matrix based on the extrapolated GaussSeidel iterative method [J]. J4, 2013, 48(4): 65-71.
[5] LU La-la, DOU Jia-wei. The periodic solution for a class of competition system with proportional and constant impulse harvesting [J]. J4, 2012, 47(9): 98-104.
[6] LIU Xiao-guang, CHANG Da-wei*. The optimal parameters of PSD method for rank deficient linear systems [J]. J4, 2011, 46(12): 13-18.
[7] LU Feng. Alternately restarted Krylov subspace methods for large linear systems of equations [J]. J4, 2010, 45(9): 65-69.
[8] . Modified threestep iterative method for solving variational inequalities [J]. J4, 2009, 44(6): 69-74.
[9] LIU Hong-hua . The alternating group iterative method for the dispersive equation [J]. J4, 2007, 42(1): 19-23 .
[10] LI Lei,ZHANG Yu-hai . The Hermitian positive definite solutions of the matrixequation X+A*XqA=I(q>0) [J]. J4, 2006, 41(4): 32-39 .
[11] XU Yun-fei and Lǔ . Sums of nine almost equal prime cubes [J]. J4, 2006, 41(2): 59-62 .
[12] GAO Dong-jie and ZHANG Yu-hai . The Hermitian positive definite solutions of the matrixequation X-A*XqA=I(q>0) [J]. J4, 2006, 41(1): 97-105 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!