JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (8): 28-37.doi: 10.6040/j.issn.1671-9352.0.2020.024

Previous Articles    

Gröbner-Shirshov basis of irreducible modules over quantum group of type B2

HE Yu-xing, Abdukadir Obul*   

  1. College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Published:2020-07-14

Abstract: By using the known Gröbner-Shirshov basis of quantum group Uq(B2) and the double free module method, we give a Gröbner-Shirshov pair of finite dimensional irreducible Uq(B2)-module Vq(λ), first, then by specializing a suitable version of Uq(B2) at q=1, we get a Gröbner-Shirshov basis of U(B2) and a Gröbner-Shirshov pair of finite dimensional irreducible U(B2)-module V(λ).

Key words: Grö, bner-Shirshov pair, composition, quantum group, double free module

CLC Number: 

  • O153.3
[1] BUCHBERGER B. An algorithm for finding a basis for the residue class ring of a zero-dimensional ideal[D]. Innsbruck: University of Innsbruck, 1965.
[2] SHIRSHOV A I. Some algorithmic problem for Lie algebras[J]. Sibirsk Mat Z, 1962, 3(2):292-296.
[3] BERGMAN G M. The diamond lemma for ring theory[J]. Adv in Math, 1978, 29:178-218.
[4] BOKUT L A, MALCOLMSON P. Gröbner-Shirshov bases for quantum enveloping algebras[J]. Israel Journal of Mathematics, 1996, 96:97-113.
[5] KANG S J, LEE K H. Gröbner-Shirshov bases for representation theory[J]. J Korean Math Soc, 2000, 37(1):55-72.
[6] KANG S J, LEE K H. Gröbner-Shirshov bases for irreducible sln+1-modules[J]. J Algebra, 2000, 232:1-20.
[7] KANG S J, LEE I S, LEE K H, et al. Hecke algebras, Specht modules and Gröbner-Shirshov bases[J]. J Algebra, 2002, 252:258-292.
[8] CHIBRIKOV E S. On free Lie conformal algebras[J]. Vestnik Novosibirsk State University, 2004, 4(1):65-83.
[9] CHEN Y Q, CHEN Y S, ZHONG C Y. Composition-diamond lemma for modules[J]. Czechoslovak Math J, 2010, 135(60), no.1:59-76.
[10] LEE Dong-IL. Gröbner-Shirshov bases for irreducible sp4-modules[J]. J Korean Math Soc, 2008, 45:711-725.
[11] KONG J S, OBUL A. Gröbner-Shirshov basis of quantum group of type B2[J]. Southeast Asian Bull Math, 2010, 34(4):693-704.
[12] JANTZEN J C. Lectures on quantum groups[M] // Graduate Studies in Mathematics, Volume 6, Amer Math Soc.[S.l.] : Providence, 1996.
[13] RINGEL C M. PBW-bases of quantum groups[J]. J Reine Angew Math, 1996, 470:51-88.
[14] BOKUT L A, KLEIN A A. Serre relations and Gröbner-Shirshov bases for simple Lie algebras, II[J]. Internat J of Algebra and Comput, 1996, 6:389-400.
[1] Gulshadam Yunus, Abdukadir Obul. Generalized inverse via Gröbner-Shirshov basis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 54-57.
[2] XU Xiu-juan, YAN Shuo, ZHU Ye-qing. Global regularity for very weak solutions to non-homogeneous A-harmonic equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 48-56.
[3] Munayim Dilxat, Abdukadir Obul. Gröbner-Shirshov basis of degenerate affine Hecke algebras of type A [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 106-110.
[4] YAN Yan, HAO Xiao-hong. Differential privacy partitioning algorithm based on adaptive density grids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 12-22.
[5] ZOU Shao-hui, ZHANG Tian. Interaction relationship between international carbon future price and domestic carbon price [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(5): 70-79.
[6] CHEN Dong, WANG Fang-gui, JIAN Hong, CHEN Ming-zhao. Structure of modules over 2-strongly Gorenstein semisimple ring with its application [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 24-30.
[7] WAN Peng-fei, GAO Xing-bao. Novel artificial bee colony algorithm based on objective space decomposition for solving multi-objective optimization problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 56-66.
[8] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[9] DONG Jiong, CAO Xiao-hong. Weyls theorem for the cube of operator and compact perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 15-21.
[10] LIU Wen-yue, SUN Tong-jun. Iterative non-overlapping domain decomposition method for optimal boundary control problems governed by elliptic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 21-28.
[11] TANG Ji-hua, CHEN Bao-hui, SHI Kai-quan. P-augmented matrix reasoning and intelligent decomposition mining of information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 61-66.
[12] YANG Yuan-hui, LI Guo-dong, WU Chun-fu, WANG Xiao-long. Fast pose estimation for on-board camera and scene reconstruction in monocular vision SLAM [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 116-124.
[13] FENG Guo-he, WANG Dan-di, LI Mei-chan. Text topic mining of archives research based on SVD [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(1): 95-100.
[14] HOU Xue-wei, ZHANG Gui-zhai, LI Jing, LI Xiao-ming. Decomposition processes and simulation of two species of submerged plants under different temperatures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 23-31.
[15] LUO Gao-jun, ZUO Ke-zheng, ZHOU Liang. The new properties of core inverse of matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 90-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!