JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (4): 54-56.doi: 10.6040/j.issn.1671-9352.0.2020.392

Previous Articles    

Excellent extensions and Auslander-type conditions

ZHANG Ying-ying   

  1. School of Science, Huzhou University, Huzhou 313000, Zhejiang, China
  • Published:2021-04-13

Abstract: Let Γ be an excellent extension of an Artin algebra Λ. It is proved that Λ satisfies (l,n)-condition if and only if Γ satisfies (l,n)-condition.

Key words: Artin algebra, excellent extension, Auslander-type condition

CLC Number: 

  • O154.2
[1] PASSMAN D S. The algebra structure of group rings[M]. New York: Wiley-Interscience, 1977.
[2] BONAMI L. On the structure of skew group ring[M]. Algebra Berichte, vol 48. Munich: Verlag Reinhard Fischer, 1984.
[3] FENG L G. Essential extensions, excellent extensions and finitely presented dimension[J]. Adv Math Sin, 1997, 13:231-238.
[4] HUANG Z Y, SUN J X. Invariant properties of representations under excellent extensions[J]. J Algebra, 2012, 358:87-101.
[5] LIU Z K. Excellent extensions and homological dimensions[J]. Comm Algebra, 1994, 22:1741-1745.
[6] PARMENTER M M, STEWART P N. Excellent extension[J]. Comm Algebra, 1988, 16:703-713.
[7] XUE W M. On almost excellent extension[J]. Algebra Colloq, 1996, 3:125-134.
[8] XIAO Y F. SF-rings and excellent extensions[J]. Comm Algebra, 1994, 22:2463-2471.
[9] ZHANG Y Y. Excellent extensions and homological conjectures[J]. Algebra Colloq, 2018, 4:619-626.
[10] FOSSUM R M, GRIFFITH P, REITEN I. Trivial extension of Abelian categories. Homological algebra of trivial extensions of Abelian categories with applications to ring theory[M]. Lecture Note in Math 456, Berlin: Springer, 1975.
[11] IYAMA O. τ-Categories III. Auslander orders and Auslander-Reiten quivers[J]. Algebr Represent Theory, 2005, 8(5):601-619.
[12] REITEN I, RIEDTMANN C. Skew group algebras in the representation theory of Artin algebras[J]. J Algebra, 1985, 92:224-282.
[13] HUANG Z Y. Syzygy modules for quasi k-Gorenstein rings[J]. J Algebra, 2006, 299(1):21-32.
[14] HUANG Z Y, IYAMA O. Auslander-type conditions and cotorsion pairs[J]. J Algebra, 2007, 318:93-110.
[15] IYAMA O. Symmetry and duality on n-Gorenstein rings[J]. J Algebra, 2003, 269(2):528-535.
[1] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[2] WANG Chao. Gorenstein injective modules over upper triangular matrix Artin algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 89-93.
[3] LEI Xue-ping. Almost complete C-tilting modules [J]. J4, 2011, 46(2): 101-104.
[4] . AuslanderReiten correspondence for WCtilting modules [J]. J4, 2009, 44(12): 41-43.
[5] LEI Xue-ping . W-C-tilting modules [J]. J4, 2008, 43(10): 27-30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!