JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (5): 57-65.doi: 10.6040/j.issn.1671-9352.1.2020.060
ZHANG Bin-yan, ZHU Xiao-fei*, XIAO Zhao-hui, HUANG Xian-ying, WU Jie
CLC Number:
[1] WANG Fang, WANG Zhongyuan, LI Zhoujun, et al. Concept-based short text classification and ranking[C] // Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. New York: ACM, 2014: 1069-1078. [2] LEE Jiyoung, DERNONCOURT F. Sequential short-text classification with recurrent and convolutional neural networks[C] // Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: ACL, 2016: 515-520. [3] CAI Hongyun, ZHENG V W, CHANG Kevin Chen-chuan. A comprehensive survey of graph embedding: problems, techniques and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9):1616-1637. [4] ZHANG Dongwen, XU Hua, SU Zengcai, et al. Chinese comments sentiment classification based on word2vec and SVMperf[J]. Expert Systems with Applications, 2015, 42(4):1857-1863. [5] YANG Zichao, YANG Diyi, DYER Chris, et al. Hierarchical attention networks for document classification[C] //Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego: ACL, 2016: 1480-1489. [6] KIM Yoon. Convolutional neural networks for sentence classification[J]. arXiv, 2014: 1746-1751. https://arxiv.org/abs/1408.5882. [7] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [8] BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[J]. arXiv, 2018. https://arxiv.org/pdf/1806.01261.pdf. [9] PENG Hao, LI Jianxin, HE Yu, et al. Large-scale hierarchical text classification with recursively regularized deep graph-cnn[C] // Proceedings of the 2018 World Wide Web Conference. Lyon: WWW, 2018: 1063-1072. [10] YAO Liang, MAO Chensheng, LUO Yuan. Graph convolutional networks for text classification[R/OL]. AAAI, 2019: 7370-7377. https://arxiv.org/abs/1809.05679. [11] WANG Sida, MANNING Christopher D. Baselines and bigrams: simple, good sentiment and topic classification[C] // Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju: ACL, 2012: 90-94. [12] LAZARIDOU A, TITOV I, SPORLEDER C. A bayesian model for joint unsupervised induction of sentiment, aspect and discourse representations[C] //Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: ACL, 2013: 1630-1639. [13] POST Matt, BERGSMA Shane. Explicit and implicit syntactic features for text classification[C] //Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia: ACL, 2013: 866-872. [14] LAI Siwei, XU Liheng, LIU Kang, et al. Recurrent convolutional neural networks for text classification[C] //Proceedings of the 29th AAAI Conference on Artificial Intelligence.[S.L] :[s.n.] , 2015: 2267-2273. [15] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[R/OL]. 2017. https://arxiv.org/pdf/1609.02907v4.pdf [16] MARCHEGGIANI D, TITOV I. Encoding sentences with graph convolutional networks for semantic role labeling[C] // Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.[S.L] : [s.n.] , 2017: 1506-1515. [17] LI Yifu, JIN Ran, LUO Yuan. Classifying relations in clinical narratives using segment graph convolutional and recurrent neural networks(Seg-Gcrns)[J]. Journal of the American Medical Informatics Association, 2019, 26(3):262-268. [18] BASTINGS J, TITOV I, AZIZ W, et al. Graph convolutional encoders for syntax-aware neural machine translation[C] // Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: ACL, 2017: 1957-1967. [19] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. Computer Science, 2013. https://arxiv.org/pdf/1301.3781v3.pdf. [20] HAO Yanchao, ZHANG Yuanzhe, LIU Kang, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C] // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers). Vancouver:ACL, 2017: 221-231. [21] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //Proceedings of the 31st Conference on Neural Information Processing Systems(NIPS 2017). Long Beach:[s.n.] , 2017. [22] 吴洁, 朱小飞, 张宜浩, 等. 基于用户情感倾向感知的微博情感分析方法[J].山东大学学报(理学版), 2019, 54(3):46-55. WU Jie, ZHU Xiaofei, ZHANG Yihao, et al. Microblog sentiment analysis method based on users emotional orientation perception[J]. Journal of Shandong University(Natural Science), 2019, 54(3):46-55. [23] KINGMA D, BA J. Adam: a method for stochastic optimization[R/OL]. 2017. https://arxiv.org/pdf/1412.6980.pdf. [24] LILLEBERG Joseph, ZHU Yun, ZHANG Yanqing. Support vector machines and word2vec for text classification with senmantic features[C] // Proceedings of the 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing. Beijing: IEEE, 2015: 136-140. [25] DAI Yuanfei, GUO Wenzhong, CHEN Xing, et al. Relation classification via LSTMs based on sequence and tree structure[J]. IEEE Access, 2018, 6:64927-64937. [26] YANG Xiaoyilei, XU Shuaijing, WU Hao, et al. Sentiment analysis of weibo comment texts based on extended vocabulary and convolutional neural network[J]. Procedia Computer Science, 2019, 147:361-368. [27] WU Chuhan, WU Fangzhao, AN Mingxiao, et al. NPA: neural news recommendation with personalized attention[C] //Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.[S.l.] : ACM, 2019: 2576-2584. |
[1] | YANG Ting, ZHU Heng-dong, MA Ying-cang, WANG Yi-rui, YANG Xiao-fei. Semi-supervised spectral clustering algorithm based on L2,1 norm and manifold regularization terms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 67-76. |
[2] | ZHANG Peng, WANG Su-ge, LI De-yu, WANG Jie. A semi-supervised spam review classification method based on heuristic rules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 44-51. |
[3] | SU Feng-long, XIE Qing-hua, HUANG Qing-quan, QIU Ji-yuan, YUE Zhen-jun. Semi-supervised method for attribute extraction based on transductive learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 111-115. |
[4] | DU Hong-le, ZHANG Yan, ZHANG Lin. Intrusion detection on imbalanced dataset [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 50-57. |
[5] | MA Cheng-long, JIANG Ya-song, LI Yan-ling, ZHANG Yan, YAN Yong-hong. Short text classification based on word embedding similarity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(12): 18-22. |
|