JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (8): 94-98.doi: 10.6040/j.issn.1671-9352.0.2021.139

Previous Articles    

Some notes on periodic modules

WANG Jian1, WU Jin-yong2   

  1. 1. College of Science, Jinling Institute of Technology, Nanjing 211169, Jiangsu, China;
    2. College of Mathematics and Physics, Wenzhou University, Wenzhou 325035, Zhejiang, China
  • Published:2021-08-09

Abstract: Let R be a ring and A a class of left R-modules. Assume that A is a projectively resolving precovering class, using dimension shifting, a sufficient condition for an A -periodic left R-module M in A is obtained by applying the properties of A -dimensions and self-orthogonal modules. As an application, some characterizations of finiteness of the left global dimension of R are given which provided that the left Gorenstein global dimension of R is finite. In addition, under an extra condition, a characterization of infinitely presented partial tilting modules in A is supplied.

Key words: A -periodic module, left global dimension, partial tilting module

CLC Number: 

  • O154.2
[1] BENSON D J, GOODEARL K R. Periodic flat modules, and flat modules for finite groups[J]. Pacific J Math, 2000, 196(1):45-67.
[2] BAZZONI S, CORTÉS-IZURDIAGA M, ESTRADA S. Periodic modules and acyclic complexes[J]. Algebr Represent Theory, 2020, 23:1861-1883.
[3] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193.
[4] ZHU Xiaosheng. Resolving resolution dimensions[J]. Algebr Represent Theory, 2013, 16:1165-1191.
[5] BENNIS D. A note on Gorenstein flat dimension[J]. Algebra Colloq, 2011, 18:155-161.
[6] GÖBEL R, TRLIFAJ J. Approximations and endomorphism algebras of modules[M]. Berlin: Walter de Gruyter, 2006.
[7] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220:611-633.
[8] BENNIS D, MAHDOU N. Strongly Gorenstein projective, injective, and flat modules[J]. J Pure Appl Algebra, 2007, 210:437-445.
[9] HUANG Zhaoyong. Proper resolutions and Gorenstein categories[J]. J Algebra, 2013, 393:142-169.
[10] ROTMAN J J. An introduction to homological algebra[M]. New York: Academic Press, 1979.
[11] BENNIS D, MAHDOU N. Global Gorenstein dimensions[J]. Proc Amer Math Soc, 2010, 138(2):461-465.
[12] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
[1] ZHAO Tiao, ZHANG Chao. q-Cartan matrices of self-injective Nakayama algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 46-51.
[2] CHEN Wen-qian, ZHANG Xiao-jin, ZAN Li-bo. The number of tilting modules over Gorenstein algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 14-16.
[3] GUO Shou-tao, WANG Zhan-ping. Gorenstein homological dimensions of modules under exact zero-divisors [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 17-21.
[4] . FR-injective and FR-flat dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 1-6.
[5] LUO Xiao-qiang, XING Jian-min. Ding gr-injective and gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 87-91.
[6] WANG Xiao-qing, LIANG Li. Strongly cotorsion modules under faithfully flat co-base change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 92-94.
[7] YANG Chun-hua. A note on the Gc-injective dimension of a complex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 82-86.
[8] XU Hui, ZHAO Zhi-bing. Relative torsionless modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 75-80.
[9] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[10] SUN Wei-kun, LIN Han-xing. Representation dimension of one-point extension algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 85-91.
[11] CHENG Hai-xia, YIN Xiao-bin. Gorenstein injective objects in Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 79-84.
[12] XIE Zong-zhen, ZHANG Xiao-jin. On algebras with all τ-rigid modules projective [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 16-20.
[13] CHEN Xiu-li, CHEN Jian-long. Copure projective dimensions under Hopf extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 7-10.
[14] LUO Xiao-qiang, TAN Ling-ling, XING Jian-min. On homological properties of C-torsionless and C-reflexive modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 72-79.
[15] ZHANG Li-ying, YANG Gang. Cartan-Eilenberg Gorenstein AC-cohomology dimension of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 77-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!