JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (9): 87-95.doi: 10.6040/j.issn.1671-9352.0.2020.257

Previous Articles    

A class of newly modified WYL conjugate gradient algorithms

WANG Song-hua, LUO Dan*, LI Yong   

  1. School of Mathematics and Statistics, Baise University, Baise 533000, Guangxi, China
  • Published:2021-09-13

Abstract: A class of newly WYL conjugate gradient algorithms is proposed for a large scale unconstrained problem. The new algorithms does not depend on any line research and possesses sufficient descent property and trust region trait. The global convergence has proven with weakness Wolfe-Powell line search. Preliminary numerical result has shown that the algorithms are more efficient and more competitive than classical WYL conjugate gradient method.

Key words: unconstrained optimization, WYL conjugate gradient method, sufficient descent property, trust region, global convergence

CLC Number: 

  • O222.4
[1] 戴彧虹,袁亚湘. 非线性共轭梯度法[M]. 上海:上海科学技术出版社,1999. DAI Yuhong, YUAN Yaxiang. Nonlinear conjugate gradient method[M]. Shanghai: Shanghai Science and Technology Publisher, 1999.
[2] POWELL M J D. Nonconvex minimization calculations and the conjugate gradient method[J]. Lecture Notes in Mathematics, 1984, 1066:122-141.
[3] GILBERT J C, NOCEDAL J. Global convergence properties of conjugate gradient methods for optimization[J]. SIAM Journal of Optimization, 2006, 2(1):21-42.
[4] WEI Z X, YAO S W, LIU L Y. The convergence properties of some new conjugate gradient methods[J]. Applied Mathematics and Computation, 2006, 183(2):1341-1350.
[5] YUAN G L,WEI Z X, LI G Y. A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs[J]. Journal of Computational and Applied Mathematics, 2014, 255(1):86-96.
[6] 李春念,袁功林. 求解无约束问题的修正PRP共轭梯度算法[J].西南大学学报(自然科学版),2018,40(9):67-75. LI Chunnian, YUAN Gonglin. A modified Polak-Ribière-Polyak conjugate gradient algorithm for smooth convex programs[J]. Journal of Southwest University(Natural Science Edition), 2018, 40(9):67-75.
[7] YUAN G L, WANG X L, SHENG Z. Family weak conjugate gradient algorithms and their convergence analysis for nonconvex functions[J]. Numerical Algorithms, 2020, 84:935-956.
[8] 林穗华. Wolfe线搜索下的修正FR谱共轭梯度法[J]. 山东大学学报(理学版),2017,52(4):6-12. LIN Suihua. A modified FR spectral conjugate gradient method with Wolfe line search[J]. Journal of Shandong University(Natural Science), 2017, 52(4):6-12.
[9] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版),2016,51(6):16-23. WANG Kairong, GAO Peiting. Two mixed conjugate gradient methods based on DY[J]. Journal of Shandong University(Natural Science), 2016, 51(6):16-23.
[10] CHILMERAN H, AL-TAIE S, SAEED E. New parameter of CG-method for unconstrained optimization[J]. AL-Rafidain Journal of Computer Sciences and Mathematics, 2019, 13(1): 22-31.
[11] 王松华,黎勇,吴加其. 一种新型线搜索下的修正3项LS谱共轭梯度法[J]. 安徽大学学报(自然科学版),2019,43(4):40-44. WANG Songhua, LI Yong, WU Jiaqi. A modified three terms LS conjugate gradient method with a new line search[J]. Journal of Anhui University(Natural Science Edition), 2019, 43(4):40-44.
[12] 孙颖异,李健,孙中波,等. 求解无约束优化问题的两类修正的WYL共轭梯度方法[J]. 应用数学,2019,32(2):415-422. SUN Yingyi, LI Jian, SUN Zhongbo, et al. Two modified WYL conjugate gradient methods for unconstrained optimization problem[J]. Mathematica Applicata, 2019, 32(2):415-422.
[13] 简金宝,尹江华,江羡珍. 一个充分下降的有效共轭梯度法[J]. 计算数学,2015,37(4):415-424. JIAN Jinbao, YIN Jianghua, JIANG Xianzhen. An efficient conjugate gradient method with sufficient descent property[J]. Mathematica Numerica Sinica, 2015, 37(4):415-424.
[14] 董晓亮,李卫军. 一类新的WYL型共轭梯度法及其全局收敛性[J]. 河南师范大学学报(自然科学版),2018,46(4):107-112. DONG Xiaoliang, LI Weijun. Global convergence of a new Wei-Yao-Liu type conjugate gradient method[J]. Journal of Henan Normal University(Natural Science Edition), 2018, 46(4):107-112.
[15] DAI Z F, WEN F H. Another improved Wei-Yao-Liu nonlinear conjugate gradient method with sufficient descent property[J]. Applied Mathematics & Computation, 2012, 218(14):7421-7430.
[16] YUAN G L, MENG Z H, LI Y. A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations[J]. Journal of Optimization Theory and Applications, 2016, 168(1):129-152.
[17] 袁亚湘,孙文瑜.最优化理论与方法[M]. 北京:科学技术出版社,2001. YUAN Yaxiang, SUN Wenyu. Optimization theory and methods[M]. Beijing: Beijing Science and Technology Publisher, 2001.
[18] BONGARTZ I, CONN A R, GOUNLD N. Constrained and unconstrained testing environment[J]. ACM Transactions on Mathematical Software, 1993, 50(124):123-160.
[19] ANDREI N. An unconstrained optimization test functions collection[J]. Environmental Science and Technology, 2008, 10(1):6552-6558.
[20] DOLAN E D, MORÉ J J. Benchmarking optimization software with performance profiles[J]. Mathematical Programming, 2001, 91(2):201-213.
[1] LIN Sui-hua. A modified FR spectral conjugate gradient method with Wolfe line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 6-12.
[2] ZHENG Xiu-yun, SHI Jia-rong. A globally convergent conjugate gradient method with Armijo line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 98-101.
[3] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16-23.
[4] WANG Kai-rong, WANG Shu-min. The modified hybrid conjugates gradient methods with sufficient descent property [J]. J4, 2013, 48(09): 78-84.
[5] FENG Lin1,2, DUAN Fu-jian1, HE Wen-long1. A filter non-monotone trust region algorithm with a simple quadratic model [J]. J4, 2012, 47(5): 108-114.
[6] GAO Bao, SUN Qing-ying. Modified HS conjugate gradient method based on Zhang H C nonmonotone technique [J]. J4, 2011, 46(7): 106-111.
[7] LI Min, CHEN Yu, QU Ai-ping. A sufficient descent DY conjugate gradient method and its global convergence [J]. J4, 2011, 46(7): 101-105.
[8] CHENG Li-qing1,2, SHI Qiao-lian2. A new hybrid conjugate gradient method [J]. J4, 2010, 45(6): 81-85.
[9] CHENG Li-qing. The global convergence of a class of conjugate gradient methods [J]. J4, 2010, 45(5): 101-105.
[10] WANG Kai-rong, CAO Wei, WANG Yin-he. A spectral CD conjugate gradient method with Armijo-type line search [J]. J4, 2010, 45(11): 104-108.
[11] . A new class of memory gradient methods with Wolfe line search [J]. J4, 2009, 44(7): 33-37.
[12] SUN Min . A modified super-memory gradient method with angle property [J]. J4, 2008, 43(6): 68-70 .
[13] LIU Li-ying,LI Ying , . Global convergence of a conjugate gradient method with strong Wolfe-Powell line search [J]. J4, 2008, 43(5): 54-57 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!