JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (11): 71-75.doi: 10.6040/j.issn.1671-9352.0.2020.358
TAN Xiang
CLC Number:
[1] BONDY J A, MURTY U S R. Networks[M] //Graph Theory with Applications. London: Macmillan Education UK, 1976: 191-211. [2] BEHZAD M. Graphs and their chromatic numbers[D]. Michigan: Michigan State University, 1965. [3] VIZING V G. Some unsolved problems in graph theory[J]. Russian Mathematical Surveys, 1968, 23(6):125-141. [4] VIJAYADITYA N. On total chromatic number of a graph[J]. Journal of the London Mathematical Society, 1971,(3):405-408. [5] ROSENFELD M. On the total coloring of certain graphs[J]. Israel Journal of Mathematics, 1971, 9(3):396-402. [6] KOSTOCHKA A V. Upper bounds of chromatic functions on graphs[D]. Novosibirsk:[s,L] , 1978. [7] KOSTOCHKA A V. The total chromatic number of any multigraph with maximum degree five is at most seven[J]. Discrete Mathematics, 1996, 162(1/2/3):199-214. [8] SANDERS D P, ZHAO Y. On total 9-coloring planar graphs of maximum degree seven[J]. Journal of Graph Theory, 1999, 31(1):67-73. [9] BORODIN O V, KOSTOCHKA A V, WOODALL D R. Total colorings of planar graphs with large maximum degree[J]. Journal of Graph Theory, 1997, 26(1):53-59. [10] WANG W F. Total chromatic number of planar graphs with maximum degree ten[J]. Journal of Graph Theory, 2007, 54(2):91-102. [11] KOWALIK Ł, SERENI J S, ŠKREKOVSKI R. Total-coloring of plane graphs with maximum degree nine[J]. SIAM Journal on Discrete Mathematics, 2008, 22(4):1462-1479. [12] 蔡华. 平面图的若干染色问题[D]. 济南: 山东大学, 2016. CAI Hua. Some coloring problems of planar graphs[D]. Jinan: Shandong University, 2016. [13] HOU J F, LIU B, LIU G Z, et al. Total coloring of planar graphs without 6-cycles[J]. Discrete Applied Mathematics, 2011, 159(2/3):157-163. [14] SHEN L, WANG Y Q. Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable[J]. Discrete Mathematics, 2010, 310(17/18):2372-2379. [15] SHEN L, WANG Y Q. On the 7 total colorability of planar graphs with maximum degree 6 and without 4-cycles[J]. Graphs and Combinatorics, 2009, 25(3):401-407. |
[1] | MA Li-li, DAI Di, LI Qiang. Constitutions and Abelian extensions of δ-Jordan Lie supertriple systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 76-80. |
[2] | ZHANG Sheng-gui, CHEN Xiang-en. Vertex-distinguishing Ⅰ-total coloring and Ⅵ-total coloring of almost complete graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 23-25. |
[3] | YANG Jia-rui, CHEN Xiang-en. Vertex-distinguishing general total coloring of K3,3,p [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 18-23. |
[4] | LIU Zhuo-ya, XU Chang-qing. Adjacent vertex distinguishing edge coloring of planar graphs without intersecting triangles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(9): 36-41. |
[5] | MA Li-li, LI Qiang. Abelian extensions of δ-Lie color algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 38-42. |
[6] | CHEN Hong-yu, ZHONG Bin. Linear 2-arboricity of planar graphs without intersecting 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 38-45. |
[7] | CHEN Chen, GAO Ying-ying, CHEN Hui-xiang. Lazy 2-cocycles on 9-dimensional Taft algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 73-78. |
[8] | . Vertex-distinguishing IE-total coloring and general-total coloring of K1,3,p and K1,4,p [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 53-60. |
[9] | CHEN Hong-ling, WANG Hui-juan, GAO Hong-wei. Linear arboricity of graphs embedded in a surface of non-negative Euler characteristic [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 17-22. |
[10] | LIU Jia, SUN Lei. Planar graphs without 4-cycle or chordal-6-cycle are(3,0,0)-colorable [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 31-40. |
[11] | LI Qiang, MA Li-li, WANG Xiao-yan, LYU Li-jiao. Abelian extensions of Hom-Jordan Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 4-8. |
[12] | . Vertex-distinguishing E-total coloring of complete bipartite graph K10,n with 10≤n≤90 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 23-30. |
[13] | FANG Qi-ming, ZHANG Li. k-frugal list coloring of planar graphs without 4 and 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 35-41. |
[14] | WANG Xiao-li, WANG Hui-juan, LIU Bin. Total coloring of planar graphs with maximum degree seven [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 100-106. |
[15] | WANG Ye, SUN Lei. Every 1-planar graph without cycles of length 3 or 4 is 5-colorable [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 34-39. |
|