JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (7): 38-45.doi: 10.6040/j.issn.1671-9352.0.2019.095
CHEN Hong-yu, ZHONG Bin
CLC Number:
[1] HABIB M, PÉRROCHE B. Some problems about linear arboricity[J]. Discrete Math, 1982, 41:219-220. [2] CHEN B L, FU H L, HUANG K C. Decomposing graphs into forests of paths with size less than three[J]. Australas J Combin, 1991, 3:55-73. [3] FU H L, HUANG K C. The linear 2-arboricity of complete bipartite graphs.[J]. Australas J Combin, 1994, 38:309-318. [4] THOMASSEN C. Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5[J]. Journal of Combinatorial Theory Series B, 1999, 75(1):100-109. [5] CHANG G J, CHEN B L, FU H L, et al. Linear k-arboricities on trees[J]. Discrete Applied Mathematics, 2000, 103(1/2/3):281-287. [6] BERMOND J C, FOUQUET J L, HABIB M, et al. On linear k-arboricity[J]. Discrete Mathematics, 1984, 52(2):123-132. [7] JACKSON B, WORMALD N C. On the linear k-arboricity of cubic graphs.[J]. Discrete Mathematics, 1996, 162(1/2/3):293-297. [8] ALDRED R E L, WORMALD N C. More on the linear k-arboricity of regular graphs[J]. Australasian Journal of Combinatorics, 1998, 18:97-104. [9] LIH K W, TONG L D, WANG W F. The linear 2-arboricity of planar graphs[J]. Graphs and Combinatorics, 2003, 19:241-248. [10] 钱景,王维凡. 不含4-圈的平面图的线性2-萌度[J]. 浙江师范大学学报(自然科学版)2006, 29(2): 121-125. QIAN Jing, WANG Weifan. The linear 2-arboricity of planar graphs without 4-cycles[J]. Journal of Zhejiang Normal University(Nat Sci), 2006, 29:121-125. [11] MA Qin, WU Jianliang. Planar graphs without 5-cycles or without 6-cycles[J]. Discrete Mathematics, 2009, 309:2998-3005. [12] CHEN Hongyu, TAN Xiang, WU Jianliang. The linear 2-arboricity of planar graphs without adjacent short cycles[J]. Bull Korean Math Soc, 2012, 49(1):145-154. [13] 王苒群,左连翠. 不含4-圈和5-圈的平面图的线性2-萌度[J].山东大学学报(理学版), 2012, 47(6): 71-75. WANG Ranqun, ZUO Liancui. The linear 2-arboricity of planar graphs without 4-cycles and 5-cycles[J]. Journal of Shandong University(Natural Science), 2012, 47(6): 71-75. [14] 陈宏宇,张丽. 不含弦5-圈和弦6-圈的平面图的线性2-萌度[J]. 山东大学学报(理学版), 2014, 49(6):26-30. CHEN Hongyu, ZHANG Li. The linear 2-arboricity of planar graphs without 5-,6-cycles with chord[J]. Journal of Shandong University(Natural Science), 2014, 49(6): 26-30. [15] NIU H X, CAI J S. Linear 2-Arboricity of planar graphs with neither 3-cycles nor adjacent 4-cycles[J]. Graphs and Combinatorics, 2013, 29(3):661-667. [16] WANG W, LI Y, HU X, et al. Linear 2-arboricity of toroidal graphs[J/OL]. Bulletin of the Malaysian Mathematical Sciences Society, 2016. DOI: 10.1007/s40840-016-0434-z(2016). |
[1] | CHEN Chen, GAO Ying-ying, CHEN Hui-xiang. Lazy 2-cocycles on 9-dimensional Taft algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 73-78. |
[2] | ZHANG Jiang-yue, XU Chang-qing. Linear 2-arboricity of graphs with maximum average degree at most 4 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(6): 7-10. |
[3] | LI Qiang, MA Li-li, WANG Xiao-yan, LYU Li-jiao. Abelian extensions of Hom-Jordan Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 4-8. |
[4] | CHEN Hong-ling, WANG Hui-juan, GAO Hong-wei. Linear arboricity of graphs embedded in a surface of non-negative Euler characteristic [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 17-22. |
[5] | LIU Jia, SUN Lei. Planar graphs without 4-cycle or chordal-6-cycle are(3,0,0)-colorable [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 31-40. |
[6] | FANG Qi-ming, ZHANG Li. k-frugal list coloring of planar graphs without 4 and 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 35-41. |
[7] | WANG Xiao-li, WANG Hui-juan, LIU Bin. Total coloring of planar graphs with maximum degree seven [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 100-106. |
[8] | WANG Ye, SUN Lei. Every 1-planar graph without cycles of length 3 or 4 is 5-colorable [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 34-39. |
[9] | CHEN Hong-yu, ZHANG Li. Linear 2-arboricity of planar graphs with 4-cycles have no common vertex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 36-41. |
[10] | HE Yu-ping, WANG Zhi-wen, CHEN Xiang-en. Vertex-distinguishing total coloring of mC8 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 24-30. |
[11] | YU Xiao-lan. Global dimensions of cocycle deformations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 39-43. |
[12] | TAN Xiang. Total colorings of planar graphs without 6-cycles and adjacent 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 72-78. |
[13] | BAI Dan, ZUO Lian-cui. The(d,1)-total labelling of the cube of cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 59-64. |
[14] | WANG Jia-jiang, CHEN Ling, MEN Yu-tao, JI Chen. The feasibility study on shorten treatment cycle of dental implantation and split-root technique joint repair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(3): 40-43. |
[15] | ZHU Hai-yang, GU Yu, LÜ Xin-zhong. New upper bound on the chromatic number of the square of a planar graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 94-101. |
|