JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (9): 36-41.doi: 10.6040/j.issn.1671-9352.0.2019.610
LIU Zhuo-ya, XU Chang-qing*
CLC Number:
[1] ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letters, 2002, 15(5):623-626. [2] HOR(ˇoverN)ÁK M, HUANG Danjun, WANG Weifan. On neighbor-distinguishing index of planar graphs[J]. Journal of Graph Theory, 2014, 76(4):262-278. [3] ZHU Junlei, BU Yuehua, DAI Yun. Upper bounds for adjacent vertex-distinguishing edge coloring[J]. Journal of Combinatorial Optimization, 2018, 35:454-462. [4] BONAMY M, BOUSQUET N, HOCQUARD H. Adjacent vertex-distinguishing edge coloring of graphs[C] // The Seventh European Conference on Combinatorics, Graph Theory and Applications, 2013, 16:313-318. [5] WANG Weifan, HUANG Danjun. A characterization on the adjacent vertex distinguishing index of planar graphs with large maximum degree[J]. SIAM Journal on Discrete Mathematics, 2015, 29(4):2412-2431. [6] HUANG Danjun,MIAO Zhengke,WANG Weifan. Adjacent vertex distinguishing indices of planar graphs without 3-cycles[J]. Discrete Mathematics, 2015, 338(3):139-148. [7] 严丞超,黄丹君,王维凡. 围长至少为 4 的可平面图的邻点可区别边染色[J]. 数学研究,2012,45(4):331-341. YAN Chengchao, HUANG Danjun, WANG Weifan. Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least four[J]. Journal of Mathematical Study, 2012, 45(4):331-341. |
[1] | CHEN Hong-yu, ZHONG Bin. Linear 2-arboricity of planar graphs without intersecting 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 38-45. |
[2] | LIU Jia, SUN Lei. Planar graphs without 4-cycle or chordal-6-cycle are(3,0,0)-colorable [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 31-40. |
[3] | FANG Qi-ming, ZHANG Li. k-frugal list coloring of planar graphs without 4 and 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 35-41. |
[4] | WANG Xiao-li, WANG Hui-juan, LIU Bin. Total coloring of planar graphs with maximum degree seven [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 100-106. |
[5] | WANG Ye, SUN Lei. Every 1-planar graph without cycles of length 3 or 4 is 5-colorable [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 34-39. |
[6] | CHEN Hong-yu, ZHANG Li. Linear 2-arboricity of planar graphs with 4-cycles have no common vertex [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 36-41. |
[7] | TAN Xiang. Total colorings of planar graphs without 6-cycles and adjacent 5-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 72-78. |
[8] | ZHU Hai-yang, GU Yu, LÜ Xin-zhong. New upper bound on the chromatic number of the square of a planar graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 94-101. |
[9] | MENG Xian-yong, GUO Jian-hua, SU Ben-tang. The complete coloring of 3-regular Halin graphs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 127-129. |
[10] | MA Gang. Acyclic list edge coloring of planar graphs with girth #br# ≥ 11 and maximum degree 3 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 18-23. |
[11] | CHEN Hong-yu1, ZHANG Li2. The linear 2-arboricity of planar graphs without 5-, 6-cycles with chord [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 26-30. |
[12] | ZHANG Jia-li, MIAO Lian-ying, SONG Wen-yao. Edge colorings of 1-planar graphs for maximum degree eight #br# without adjacent 4-cycles [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 18-23. |
[13] | XU Chang-qing1, AN Li-sha1, DU Ya-tao2. An upper bound on the linear 2-arboricity of planar graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 38-40. |
[14] | ZHU Hai-yang1, CHEN Wei1, L Xin-zhong2, LI Pei-jun3. On L(p,q)-labeling of planar graphs without 4,5,6-cycles and intersecting triangles [J]. J4, 2013, 48(4): 28-34. |
[15] | XUE Ling1, WU Jian-liang2*. Total chromatic number of planar graphs with few short cycles [J]. J4, 2012, 47(9): 84-87. |
|