JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (1): 50-55.doi: 10.6040/j.issn.1671-9352.0.2021.259
ZHANG Bei-bei, XU Yao, ZHOU You, LING Zhi*
CLC Number:
[1] DIA B M, DIAGNE M L, GOUDIABY M S, et al. Optimal control of invasive species with economic benefits: application to the Typha proliferation[J]. Natural Resource Modeling, 2020, 33(2):1-23. [2] 石磊, 刘华, 魏玉梅, 等. 具有Allee效应的毒杂草入侵扩散模型及空间分布模拟[J]. 武汉大学学报(理学版), 2017, 63(6):523-532. SHI Lei, LIU Hua, WEI Yumei, et al. The space distribution simulation of poisonous weeds invasion model with Allee effect[J]. Journal of Wuhan University(Natural Science), 2017, 63(6):523-532. [3] GIRARDIN L, LAM K Y. Invasion of open space by two competitors: spreading properties of monostable two-species competition diffusion systems[J]. Proceedings of the London Mathematical Society, 2019, 119(5):1279-1335. [4] BOUKAL D S. Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters[J]. Theoretical Biology, 2002, 218(3):375-394. [5] 付晓阅, 张玉娟,刘超,等. 具有Allee效应的食饵-捕食者模型的稳定性分析[J]. 生物数学学报, 2012, 27(4):639-644. FU Xiaoyue, ZHANG Yujuan, LIU Chao, et al. The stability of predator-prey systems subject to the Allee effects[J]. Journal of Biomathematics, 2012, 27(4):639-644. [6] CHEN Xinfu, FRIEDMAN A. A free boundary problem arising in a model of wound healing[J]. Society for Industrial and Applied Mathematics, 2000, 32(4):778-800. [7] DU Yihong, LIN Zhigui. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary[J]. Society for Industrial and Applied Mathematics, 2010, 42(1):377-405. [8] RUBINSTEIN L I. The stefan problem[M] //Translations of Mathematical Monographs, Vol. 27. Providence:American Mathematical Society, 1971. [9] PROTTER M H, WEINBERGER H F. Maximum principles in differential equations[M]. New York: Springer-Verlag, 1984. [10] BRUNOVSKY P, CHOW S N. Generic properties of stationary state solutions of reaction-diffusion equations[J]. Journal of Differential Equations, 1984, 53(1):1-23. [11] HALE J K, MASSATT P. Asymptotic behavior of gradient-like systems[M] //Dynamical Systems II. New York: Academic Press, 1982: 85-101. [12] SMOLLER J. Shock waves and reaction-diffusion equations[M]. 2nd ed. New York: Springer-Verlag, 1994. [13] SMOLLER J, WASSERMAN A. Global bifurcation of steady-state solutions[J]. Journal of Differential Equations, 1981, 39(2):269-290. [14] KANEKO Y, YAMADA Y. A free boundary problem for a reaction-diffusion equation appearing in ecology[J]. Advances in Mathematical Sciences and Application, 2011, 21(2):467-492. |
[1] | LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38. |
[2] | ZHANG Rui-ling, WANG Wan-xiong, QIN Li-juan. Prisoner's dilemma game of two-species with the strong Allee effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 98-103. |
[3] | LI Hai-xia. Coexistence solutions for a predator-prey model with additive Allee effect and a protection zone [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(09): 88-94. |
[4] | WU Dai-yong, ZHANG Hai. Stability and bifurcation analysis for a single population discrete model with Allee effect and delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 88-94. |
[5] | QANG Yao,LIU Jian and WANG Ren-qing,* . Allee effect and its significance to small population management in nature reservation and biological invasions [J]. J4, 2007, 42(1): 76-82 . |
|