JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (2): 1-7.doi: 10.6040/j.issn.1671-9352.0.2021.503

   

On silting comodules

YUAN Qian-qian, YAO Hai-lou*   

  1. College of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • Published:2022-01-07

Abstract: The concept of silting comodules in comodule category is introduced, and their properties are discussed. Based on the canonical methods of representation theory of algebra, we study silting comodules and partial silting comodules, and obtain the Bongartz theorem for the complement of partial silting comodules.

Key words: coalgebra, comodule, silting comodule, torsion pair

CLC Number: 

  • O153.3
[1] BRENNER S, BUTLER M C R. Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors[M] //Representation Theory II. Berlin: Springer, 1980: 103-169.
[2] HAPPEL D, RINGEL C M. Tilted algebras[J]. Trans Amer Math Soc, 1982, 274(2):399-443.
[3] HÜGEL L A, COELHO F U. Infinitely generated tilting modules of finite projective dimension[J]. Forum Math, 2001, 13(2):239-250.
[4] AUSLANDER M, REITEN I. Applications of contravariantly finite subcategories[J]. Adv Math, 1991, 86(1):111-152.
[5] ADACHI T, IYAMA O. REITEN I. τ-tilting theory[J]. Compos Math, 2014, 150(3):415-452.
[6] HÜGEL L A, HRBEK M. Silting modules over commutative rings[J]. IMRN, 2017(13):4131-4151.
[7] DOI Y. Homological coalgebra[J]. J Math Soc Japan, 1981, 33(1):31-50.
[8] LIN B I P. Semiperfect coalgebras[J]. J Algebra, 1977, 49(2):357-373.
[9] SIMSON D. Coalgebras, comodules, pseudocompact algebras and tame comodule type[J]. Colloq Math, 2001, 90(1):101-150.
[10] WANG Mingyi. Tilting Comodules over semi-perfect coalgebras[J]. Algebra Colloq, 1999, 6(4):461-472.
[11] SIMSON D. Cotilted coalgebras and tame comodule type[J]. Arab J Sci Eng, 2008, 2(33):421-446.
[12] ZHANG Sujuan, YAO Hailou. Some remarks on cotilting comodules[J]. Front Math China, 2014, 9(3):699-714.
[13] 付雪荣,姚海楼. 三角矩阵余代数上的倾斜余模[J].山东大学学报(理学版),2016,51(4):25-29,38. FU Xuerong, YAO Hailou. Tilting comodules over triangular matrix coalgebras[J]. Journal of Shandong University(Natural Science), 2016, 51(4):25-29, 38.
[14] COLPI R, TONOLO A, TRLIFAJ J. Partial cotilting modules and the lattices induced by them[J]. Comm Algebra,1997, 25(10):3225–3237
[15] COLBY R R, FULLER K R. Equivalence and duality for module categories: with tilting and cotilting for rings[M]. Cambridge: Cambridge University Press, 2004.
[1] LI Yuan, YAO Hai-lou. On torsion free class and cover class in category of comodules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 1-5.
[2] ZHANG Tao. Hopf quasicomodules in LLYD Q C M [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(4): 58-66.
[3] ZHAO Jun-xiu, DI Rong-rong, DI Zhen-xing. n-IFP-gr-injective modules and n-IFP-gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 99-103.
[4] ZHANG Ping-er, YANG Xiao-yan. A new construction method of triangulated model structures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 97-102.
[5] WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107.
[6] WU Hui, ZHANG Xiao-hui. Reconstruction of the solutions of the generalized Yang-Baxter equation based on crossed structures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 80-85.
[7] WANG Hai-wei, ZHAO Bin. The projective objects in the category of Q-sup-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 73-82.
[8] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[9] FU Xue-rong, YAO Hai-lou. Tilting comodules over triangular matrix coalgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(4): 25-29.
[10] XU Ai-min. On Gorenstein injective comodules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 7-9.
[11] WANG Zheng-ping, YANG Ren-ming. Cleft extensions of weak Hopf group coalgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 121-126.
[12] CHEN Hua-xi, ZHANG Cui-bin, DONG Li-hong. Kegel theorem for generalized Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 38-44.
[13] WANG Sheng-xiang1,2, GUO Shuang-jian2. Hom-Hopf modules for a class of symmetric categories [J]. J4, 2013, 48(4): 40-45.
[14] CHEN Hua-xi1, ZHANG Xiao-hui2, XU Qing-bing3. The Structure Theorem of weak comodule algebras in
Yetter-Drinfeld module categories
[J]. J4, 2013, 48(12): 14-17.
[15] CHEN Hua-xi1, YIN Xiao-bin2. The Duality of a Hopf π-Comodule Coalgebra [J]. J4, 2011, 46(12): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!