JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2016, Vol. 51 ›› Issue (12): 7-9.doi: 10.6040/j.issn.1671-9352.0.2016.337

Previous Articles     Next Articles

On Gorenstein injective comodules

XU Ai-min   

  1. School of Mathematical Sciences, Qufu Normal University, Qufu 273165, Shandong, Chian
  • Received:2016-07-17 Online:2016-12-20 Published:2016-12-20

Abstract: Let C be a right semiperfect coalgebra over a field. It is shown that every right C-comodule has a Gorenstein injective envelope. Moreover, if the projective dimension of C as a right C-comodule is finite, an equivalent characterization of Gorenstein injective right C-comodules is given.

Key words: Gorenstein injective comodule, Gorenstein coalgebra, semiperfect coalgebra

CLC Number: 

  • O153.3
[1] BRZEZINSKI T, WISBAUER R. Corings and comodules[M] // London Math Soc Lecture Note Ser 309. Cambridge: Cambridge University Press, 2003.
[2] STENSTRÖM B. Direct sum decomposition in Grothendieckcategories[J]. Ark Mat, 1968, 7(5):427-432.
[3] ASENSIO M J, LÓPEZ RAMOS J A, TORRECILLAS B. Gorensteincoalgebras[J]. Acta Math Hungar, 1999, 85(1-2):187-198.
[4] ENOCHS E E, LÓPEZ RAMOS J A. Relative homological coalgebras[J]. Acta Math Hungar, 2004, 104(4):331-343.
[5] PAN Qunxing, LI qi. On Gorenstein injective and projective comodules[J]. Math Notes, 2013, 94(1-2):255-265.
[6] ENOCHS E E, JENDA O M G. Relative homological algebra[M] // GEM 30. New York: Walter de Gruyter, 2000.
[7] GÖbel R, TRLIFAJ J. Approximations and endomorphism algebras of modules[M] // GEM 41. New York: Walter de Gruyter, 2006.
[8] NASTASESCU C, TORRECILLAS B, ZHANG yinhuo. Hereditary coalgebras[J].Comm. Algebra, 1996, 24(4):1521-1528.
[9] Lin B I-Peng. Semiperfect coalgebras[J]. J Algebra, 1977, 49(2):357-373.
[10] CUADRA J, SIMSON D. Flat comodules and perfect coalgebras[J]. Comm Algebra, 2007, 35:3164-3194.
[11] GILLESPIE J. On Ding injective, Ding projective, and Ding flat modules and complexes[J/OL].[2015-12-21].arXiv:1512.05999v1. http://www.doc88.com/p-1734502851535.html.
[12] YANG Xiaoyan, DING Nanqing. On a question of Gillespie[J]. Forum Math, 2015, 27:3205-3231.
[13] GILLESPIE J. Models for homotopy categories of injectives and Gorenstein injectives[J/OL]. [2015-02-19]. arXiv:1502.05530v1. http://www.doc88.com/p-0028987464467.html.
[14] HOVEY M. Cotorsion pairs, model category structures, and representation theory[J]. Math Z, 2002(241):553-592.
[1] WU Xiao-ying, WANG Fang-gui. Graded version of Enochs theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 22-26.
[2] CHENG Cheng, ZOU Shi-jia. Irreducible splitting trace module of a class of Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(4): 11-15.
[3] ZHU Lin. Separated monic representations of quivers of type A4and RSS equivalences [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 1-8.
[4] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[5] LU Dao-wei, WANG Zhen. L-R smash product for bialgebroids [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 32-35.
[6] LI Jin-lan, LIANG Chun-li. Strongly Gorenstein C-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 25-31.
[7] WANG Hui-xing, CUI Jian, CHEN Yi-ning. Nil *-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 16-24.
[8] SUN Yan-zhong, YANG Xiao-yan. Gorenstein AC-projective modules with respect to a semidualizing module [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 31-35.
[9] MA Xin, ZHAO You-yi, NIU Xue-na. Homology resolutions and homological dimensions of complexes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 18-23.
[10] . Gelfand-Krillov dimension of quantized enveloping algebra Uq(An) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 12-17.
[11] CHEN Xiu-li, CHEN Jian-long. Homological dimensions with respect to semidualizing modules and excellent extensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 85-89.
[12] CHEN Hua-xi, XU Qing-bing. The fundamental theorem forAMHH in Yetter-Drinfeld module categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(8): 107-110.
[13] LU Qi, BAO Hong-wei. ZWGP-injectivity and nonsingularity of rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 19-23.
[14] GAO Han-peng, YIN Xiao-bin. On strongly g(x)-J-clean rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 24-29.
[15] WANG Yao, ZHOU Yun, REN Yan-li. Strongly 2-good Rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!