JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (4): 58-66.doi: 10.6040/j.issn.1671-9352.0.2019.409

Previous Articles    

Hopf quasicomodules in LLYD Q C M

ZHANG Tao   

  1. School of Mathematics, Southeast University, Nanjing 211189, Jiangsu, China
  • Published:2020-04-09

Abstract: Let H denote a finite dimensional Hopf coquasigroup in Yetter-Drinfeld quasicomodule category LLYD Q CM, then its linear dual H* is a Hopf quasigroup in LLYD Q CM and also H* has a right H-Hopf quasicomodule structure in LLYD Q CM.

Key words: Hopf(co)quasigroup, Hopf quasicomodule, Yetter-Drinfeld quasimodule, braided monoidal category, duality

CLC Number: 

  • O153.5
[1] DOI Y. Hopf modules in Yetter-Drinfeld catagories[J]. Comm Algebra, 2007, 35(6):3057-3070.
[2] CAENEPEEL S, MILITARU G, ZHU S L. Frobenius and separable functors for generalized module categories and nonlinear equations[M] //Lecture Notes in Mathematics,1787. [S.l.] :Springer, 2002.
[3] WANG S H. Braided monoidal categories associated to Yetter-Drinfeld categories[J]. Comm Algebra, 2002, 30(11):5111-5124.
[4] KLIM J, MAJID S. Hopf quasigroup and the algebraic 7-sphere[J]. J Algebra, 2010, 323:3067-3110.
[5] PÉREZ-IZQUIERDO J M. Algebras, hyperalgebras, nonassociative bialgebras and loops[J]. Adv Math, 2007, 208:834-876.
[6] ALONSO ÁLVAREZ J N, FERNÁNDEZ VILABOA J M, GONZÁLEZ RODRÍGUEZ R, et al. Projections and Yetter-Drinfeld modules over Hopf(co)quasigroups[J].J Algebra, 2015, 443:153-199.
[7] BRZEZINSKI T. Hopf modules and the foundmental theorem for Hopf(co)quasigroups[J]. Intern Elect J Algebra, 2010, 8:114-128.
[8] BRZEZINSSKI T, JIAO Z M. Actions of Hopf quasigroups[J]. Comm Algebra, 2012, 40(2):681-696.
[9] FANG X L, WANG S H. Twisted smash product for Hopf quasigroups[J]. J Southeast Univ(English Ed.), 2011, 27(3):343-346.
[10] ZHANG T, WANG S H, WANG D G. A new approach to braided monoidal categories[J]. J Math Phys, 2019, 60:013510.
[11] SWEEDLER M E. Hopf algebras[M]. New York: Benjamin, 1969.
[1] ZHAO Jun-xiu, DI Rong-rong, DI Zhen-xing. n-IFP-gr-injective modules and n-IFP-gr-flat modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 99-103.
[2] WANG Xue-feng, WANG Rui-jie, GAO Xiao-yan. Duality in multiobjective programming under(V, η)-type I symmetrical invexity [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(4): 116-126.
[3] GUO Shuang-jian, LI Yi-zheng. When is BHQ a pre-braided category over quasi-Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(12): 10-15.
[4] JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101.
[5] ZHAO Jie, SHI Yu-feng. Backward stochastic Volterra integral equations with general martingales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 63-68.
[6] XIONG De-guo, HU Yong-wen. A new method of solving the assignment problem based on the permissible-edge algorithm of minimum cost flow problem [J]. J4, 2012, 47(3): 103-109.
[7] XIONG Deguo1, HU Yongwen1, SHI Jianming2. A new algorithm for solving minimum cost flow with the duality principle [J]. J4, 2011, 46(6): 99-102.
[8] CHEN Hua-xi1, YIN Xiao-bin2. The Duality of a Hopf π-Comodule Coalgebra [J]. J4, 2011, 46(12): 46-50.
[9] SU Jie, . Conjugate duality and optimal properties of value-type bilevel linear programming problem [J]. J4, 2007, 42(10): 13-17 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!