JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (4): 116-126.doi: 10.6040/j.issn.1671-9352.0.2018.384

Previous Articles    

Duality in multiobjective programming under(V, η)-type I symmetrical invexity

WANG Xue-feng, WANG Rui-jie, GAO Xiao-yan   

  1. College of Science, Xian University of Science and Technology, Xian 710054, Shaanxi, China
  • Published:2019-04-08

Abstract: By using symmetrical gradient, a class of new generalized invex function, (V, η)-type I symmetrical invex function,(V, η)-type I strictly symmetrical quasi invex function and(V, η)-type I strictly symmetrical quasiqseudo invex function are defined. Under the new generalized invexity, the Mond-Weir dual model in a class of multi-objective programming problem is discussed, and several weak duality results, strong duality result and strict converse duality result are obtained.

Key words: (V, η)-type symmetrical invex function, multiobjective programming, symmetrical gradient, duality

CLC Number: 

  • O221
[1] MANDAL P, NAHAK C. Symmetric duality with (p, r)-ρ-(η, θ)-invexity[J]. Applied Mathematics and Computation, 2011, 217(21):8141-8148.
[2] TRIPATHY A K, DEVI G. Wolfe type higher order multiple objective nondifferentiable symmetric dual programming with generalized invex function[J]. Journal of Mathematical Modelling and Algorithms in Operations Research, 2014, 13(4):557-577.
[3] 卢厚佐, 高英. 多目标分式规划逆对偶研究[J]. 数学的实践与认识, 2014, 44(23):172-178. LU Houzuo, GAO Ying. Converse duality for multiobjective fractional programming[J]. Mathematics in Practice and Theory, 2014, 44(23):172-178.
[4] BHATIA D, MEHRA A. Lagrange duality in multiobjective fractional programming problems with n-set functions[J]. Journal of Mathematical Analysis and Applications, 1999, 236(2):300-311.
[5] GAO X Y. Optimality and duality for non-smooth multiple objective semi-infinite programming[J]. Journal of Networks, 2013, 8(2):413-420.
[6] GUPTA S K, KAILEY N. Second-order multiobjective symmetric duality involving cone-bonvex functions[J]. Journal of Global Optimization, 2013, 55(1):125-140.
[7] HACHIMI M, AGHEZZAF B. Sufficiency and duality in differentiable multiobjective programming involving generalized type I functions[J]. Journal of Mathematical Analysis and Applications, 2004, 296(2):382-392.
[8] HANSON M A, RITA P N, SINGH C. Multiobjective programming under generalized type i invexity[J]. Journal of Mathematical Analysis and Applications, 2001, 261(2):562-577.
[9] GAO Xiaoyan. Two duality problems for a class of multiobjective fractional programming[J]. Computer Modelling & New Technologies, 2014, 18(10):151-157.
[10] GAO X Y. Second order duality in multiobjective programming with generalized convexity[J]. International Journal of Grid and Distributed Computing, 2014, 7(5):159-170.
[11] 赵洁. 一类不可微多目标规划的Mond-Weir型对偶[J]. 重庆师范大学学报(自然科学版), 2017, 34(3):1-5. ZHAO Jie. Mond-weir duality for a class of nondifferentiable multiobjective programming[J]. Journal of Chongqing Normal University(Natural Science), 2017, 34(3):1-5.
[12] 张庆祥. 一类广义I类不变凸半无限规划的对偶性[J]. 延安大学学报(自然科学版), 2003, 22(4):6-8. ZHANG Qingxiang. Duality for a class of semi-infinite programming under generalized type-I invexity[J]. Journal of Yanan University(Natural Science Edition), 2003, 22(4):6-8.
[13] 杨勇. Iε类半无限规划的最优性条件[J]. 西南师范大学学报(自然科学版), 2014, 39(3):45-48. YANG Yong. On optimality conditions for semi-infinite programming with type-Iε convexity[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(3):45-48.
[1] JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101.
[2] ZHAO Jie, SHI Yu-feng. Backward stochastic Volterra integral equations with general martingales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 63-68.
[3] XIONG De-guo, HU Yong-wen. A new method of solving the assignment problem based on the permissible-edge algorithm of minimum cost flow problem [J]. J4, 2012, 47(3): 103-109.
[4] XIONG Deguo1, HU Yongwen1, SHI Jianming2. A new algorithm for solving minimum cost flow with the duality principle [J]. J4, 2011, 46(6): 99-102.
[5] CHEN Hua-xi1, YIN Xiao-bin2. The Duality of a Hopf π-Comodule Coalgebra [J]. J4, 2011, 46(12): 46-50.
[6] SU Jie, . Conjugate duality and optimal properties of value-type bilevel linear programming problem [J]. J4, 2007, 42(10): 13-17 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Fang-yuan, MENG Xian-jia, TANG Zhan-yong, FANG Ding-yi, GONG Xiao-qing. Android application protection based on smali code obfuscation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 44 -50 .
[2] LIAO Xiang-wen, ZHANG Ling-ying, WEI Jing-jing, GUI Lin, CHENG Xue-qi, CHEN Guo-long. User influence analysis of social media with temporal characteristics[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 1 -12 .
[3] GU Shen-ming, LU Jin-lu, WU Wei-zhi, ZHUANG Yu-bin. Local optimal granularity selections in generalized multi-scale decision systems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(8): 1 -8 .
[4] CAO Wei-dong, DAI Tao, YU Jin-biao, WANG Xiao-hong, SHI An-feng. Improvement on the solution of pressure equation based on alternating direction in chemical flooding model[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 88 -94 .
[5] LI Jin-hai, WU Wei-zhi. Granular computing approach for formal concept analysis and its research outlooks[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(7): 1 -12 .
[6] SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran. Chinese entity relation extraction algorithms based on COAE2016 datasets[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(9): 7 -12 .
[7] YE Xiao-ming, CHEN Xing-shu, YANG Li, WANG Wen-xian, ZHU Yi, SHAO Guo-lin, LIANG Gang. Anomaly detection model of host group based on graph-evolution events[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(9): 1 -11 .
[8] Zhao-xia WU,Jia-qi WANG. Wireless single spectrum secure auction algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 51 -55 .
[9] WAN Peng-fei, GAO Xing-bao. Novel artificial bee colony algorithm based on objective space decomposition for solving multi-objective optimization problems[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 56 -66 .
[10] WANG Xin, ZUO Wan-li, ZHU Feng-tong, WANG Ying. Important-node-based community detection algorithm[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(11): 67 -77 .