JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (4): 116-126.doi: 10.6040/j.issn.1671-9352.0.2018.384
WANG Xue-feng, WANG Rui-jie, GAO Xiao-yan
CLC Number:
[1] MANDAL P, NAHAK C. Symmetric duality with (p, r)-ρ-(η, θ)-invexity[J]. Applied Mathematics and Computation, 2011, 217(21):8141-8148. [2] TRIPATHY A K, DEVI G. Wolfe type higher order multiple objective nondifferentiable symmetric dual programming with generalized invex function[J]. Journal of Mathematical Modelling and Algorithms in Operations Research, 2014, 13(4):557-577. [3] 卢厚佐, 高英. 多目标分式规划逆对偶研究[J]. 数学的实践与认识, 2014, 44(23):172-178. LU Houzuo, GAO Ying. Converse duality for multiobjective fractional programming[J]. Mathematics in Practice and Theory, 2014, 44(23):172-178. [4] BHATIA D, MEHRA A. Lagrange duality in multiobjective fractional programming problems with n-set functions[J]. Journal of Mathematical Analysis and Applications, 1999, 236(2):300-311. [5] GAO X Y. Optimality and duality for non-smooth multiple objective semi-infinite programming[J]. Journal of Networks, 2013, 8(2):413-420. [6] GUPTA S K, KAILEY N. Second-order multiobjective symmetric duality involving cone-bonvex functions[J]. Journal of Global Optimization, 2013, 55(1):125-140. [7] HACHIMI M, AGHEZZAF B. Sufficiency and duality in differentiable multiobjective programming involving generalized type I functions[J]. Journal of Mathematical Analysis and Applications, 2004, 296(2):382-392. [8] HANSON M A, RITA P N, SINGH C. Multiobjective programming under generalized type i invexity[J]. Journal of Mathematical Analysis and Applications, 2001, 261(2):562-577. [9] GAO Xiaoyan. Two duality problems for a class of multiobjective fractional programming[J]. Computer Modelling & New Technologies, 2014, 18(10):151-157. [10] GAO X Y. Second order duality in multiobjective programming with generalized convexity[J]. International Journal of Grid and Distributed Computing, 2014, 7(5):159-170. [11] 赵洁. 一类不可微多目标规划的Mond-Weir型对偶[J]. 重庆师范大学学报(自然科学版), 2017, 34(3):1-5. ZHAO Jie. Mond-weir duality for a class of nondifferentiable multiobjective programming[J]. Journal of Chongqing Normal University(Natural Science), 2017, 34(3):1-5. [12] 张庆祥. 一类广义I类不变凸半无限规划的对偶性[J]. 延安大学学报(自然科学版), 2003, 22(4):6-8. ZHANG Qingxiang. Duality for a class of semi-infinite programming under generalized type-I invexity[J]. Journal of Yanan University(Natural Science Edition), 2003, 22(4):6-8. [13] 杨勇. Iε类半无限规划的最优性条件[J]. 西南师范大学学报(自然科学版), 2014, 39(3):45-48. YANG Yong. On optimality conditions for semi-infinite programming with type-Iε convexity[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(3):45-48. |
[1] | JIA Ling, CHEN Xiao-yuan. A duality theorem for a Yetter-Drinfeld Hopf algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 98-101. |
[2] | ZHAO Jie, SHI Yu-feng. Backward stochastic Volterra integral equations with general martingales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 63-68. |
[3] | XIONG De-guo, HU Yong-wen. A new method of solving the assignment problem based on the permissible-edge algorithm of minimum cost flow problem [J]. J4, 2012, 47(3): 103-109. |
[4] | XIONG Deguo1, HU Yongwen1, SHI Jianming2. A new algorithm for solving minimum cost flow with the duality principle [J]. J4, 2011, 46(6): 99-102. |
[5] | CHEN Hua-xi1, YIN Xiao-bin2. The Duality of a Hopf π-Comodule Coalgebra [J]. J4, 2011, 46(12): 46-50. |
[6] | SU Jie, . Conjugate duality and optimal properties of value-type bilevel linear programming problem [J]. J4, 2007, 42(10): 13-17 . |
|