JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (4): 16-28.doi: 10.6040/j.issn.1671-9352.0.2022.274
HUANG Yu, GAO Guang-hua*
CLC Number:
[1] 张迪, 杨青. 一类四阶非线性抛物方程的紧致差分方法[J]. 山东师范大学学报(自然科学版), 2020, 35(2):190-196. ZHANG Di, YANG Qing. A compact difference scheme for a class of fourth order nonlinear parabolic equations[J]. Journal of Shandong Normal University(Natural Science), 2020, 35(2):190-196. [2] HU Xiuling, ZHANG Luming. A new implicit compact difference scheme for the fourth-order fractional diffusion-wave system[J]. International Journal of Computer Mathematics, 2014, 91(10):2215-2231. [3] GAO Guanghua, XU Peng, TANG Rui. Fast compact difference scheme for the fourth-order time multi-term fractional sub-diffusion equations with the first Dirichlet boundary[J]. Journal of Applied Analysis and Computation, 2021, 11(6):2736-2761. [4] YAO Zhongsheng, WANG Zhibo. A compact difference scheme for fourth-order fractional sub-diffusion equations with Neumann boundary conditions[J]. Journal of Applied Analysis and Computation, 2018, 8(4):1159-1169. [5] 陆宣如. 四阶抛物方程不同边界条件下定解问题的差分方法[D]. 南京:东南大学, 2021. LU Xuanru. The difference schemes for the fourth order parabolic equation with different boundary conditions[D]. Nanjing: Southeast University, 2021. [6] VONG S, WANG Z B. Compact finite difference scheme for the fourth-order fractional subdiffusion system[J]. Advances in Applied Mathematics and Mechanics, 2014, 6(4):419-435. [7] ARSHAD S, WALI M, HUANG J F, et al. Numerical framework for the Caputo time-fractional diffusion equation with fourth order derivative in space[J]. Journal of Applied Mathematics and Computing, 2022, 68:3295-3316. [8] MOHANTY R K, KAUR D. High accuracy two-level implicit compact difference scheme for 1D unsteady biharmonic problem of first kind: application to the generalized Kuramoto-Sivashinsky equation[J]. Journal of Difference Equations and Applications, 2019, 25(2):243-261. [9] JI Cuicui, SUN Zhizhong, HAO Zhaopeng. Numerical algorithms with high spatial accuracy for the fourth-order fractional sub-diffusion equations with the first Dirichlet boundary conditions[J]. Journal of Scientific Computing, 2016, 66(3):1148-1174. [10] GAO Guanghua, TANG Rui, YANG Qian. A compact finite difference scheme for the fourth-order time multi-term fractional sub-diffusion equations with the first Dirichlet boundary conditions[J]. International Journal of Numerical Analysis and Modeling, 2021, 18(1):100-119. [11] 单双荣. 解四阶抛物型方程的高精度差分格式[J]. 华侨大学学报(自然科学版), 2005, 26(1):19-22. SHAN Shuangrong. A family of high accurate difference scheme for solving four-order parabolic equation[J]. Journal of Huaqiao University(Natural Science), 2005, 26(1):19-22. [12] 张星, 单双荣. 解四阶抛物型方程的高精度显式差分格式[J]. 华侨大学学报(自然科学版), 2010, 31(6):703-705. ZHANG Xing, SHAN Shuangrong. Explicit difference scheme of high accuracy for solving four-order parabolic equation[J]. Journal of Huaqiao University(Natural Science), 2010, 31(6):703-705. [13] HU Xiuling, ZHANG Luming. On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems[J]. Applied Mathematics and Computation, 2012, 218(9):5019-5034. [14] MOHANTY R K, KAUR D, SINGH S. A class of two- and three-level implicit methods of order two in time and four in space based on half-step discretization for two-dimensional fourth order quasi-linear parabolic equations[J]. Applied Mathematics and Computation, 2019, 352:68-87. [15] NANDAL S, PANDEY D N. Second order compact difference scheme for time fractional sub-diffusion fourth-order neutral delay differential equations[J]. Differential Equations and Dynamical Systems, 2021, 29(1):69-86. [16] 孙志忠. 偏微分方程数值解法[M]. 3版. 北京:科学出版社,2022: 7-9. SUN Zhizhong. Numerical solutions of partial differential equations[M]. 3rd ed. Beijing: Science Press, 2022: 7-9. |
[1] | LI Xiao-wei, LI Gui-hua. Dynamic behaviors analysis of COVID-19 model with environmental virus effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 10-15. |
[2] | HUO Lin-jie, ZHANG Cun-hua. Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 16-24. |
[3] | SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90. |
[4] | SU Xiao-yan, CHEN Jing-rong, YIN Hui-ling. Generalized interval-valued Pythagorean triangular fuzzy aggregation operator and application in decision making [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 77-87. |
[5] | PANG Yu-ting, ZHAO Dong-xia, BAO Fang-xia. Stability of the bidirectional ring networks with multiple time delays and multiple parameters [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 103-110. |
[6] | HAN Zhuo-ru, LI Shan-bing. Positive solutions of predator-prey model with spatial heterogeneity and hunting cooperation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(7): 35-42. |
[7] | MENG Xu-dong. Stability and extended well-posedness of the solution sets for set optimization problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(2): 98-110. |
[8] | JIAO Zhan, JIN Zhen. Dynamics of a spatially heterogeneous SI epidemic model with nonlocal diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(11): 70-77. |
[9] | SHEN Wei, ZHANG Cun-hua. Multiple stability switches and Hopf bifurcation in a time-delay predator-prey system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 42-49. |
[10] | ZHANG Yu-qian, ZHANG Tai-lei. An SEAIR model with relapse effect and its application in COVID-19 transmission [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 56-68. |
[11] | ZHU Yan-lan, ZHOU Wei, CHU Tong, LI Wen-na. Complex dynamic analysis of the duopoly game under management delegation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 32-45. |
[12] | ZHOU Yan, ZHANG Cun-hua. Stability and Turing instability of a predator-prey reaction-diffusion system with schooling behavior [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 73-81. |
[13] | GUO Hui-ying, YANG Fu-xia, ZHANG Cui-ping. Stability of modules with finite Ext-strongly Ding projective dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 31-38. |
[14] | LU Chang-na, CHANG Sheng-xiang. Finite element method of Cahn-Hilliard equation based on adaptive moving mesh method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 17-25. |
[15] | Jie TANG,Ling WEI,Rui-si REN,Si-yu ZHAO. Granule description using possible attribute analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 75-82. |
|