JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (1): 56-68.doi: 10.6040/j.issn.1671-9352.0.2021.054
ZHANG Yu-qian, ZHANG Tai-lei*
CLC Number:
[1] 陈田木, 陈水连, 谢知, 等. 不同隐性感染和传播能力条件下的流感暴发防控措施效果模拟[J]. 中国热带医学, 2017, 17(5):470-476. CHEN Tianmu, CHEN Shuilian, XIE Zhi, et al. Simulated effectiveness of control countermeasures for influenza outbreaks based on different asymptomatic infections and transmissibility[J]. China Trop Med, 2017, 17(5):470-476. [2] LEE J, KIM J, KWON H D. Optimal control of an influenza model with seasonal forcing and age-dependent transmission rate[J]. J Theor Biol, 2013, 317(1):310-320. [3] TANG Yilei, XIAO Dongmei, ZHANG Weinian, et al. Dynamics of epidemic models with asymptomatic infection and seasonal succession[J]. Math Biosci Eng, 2017, 14(5/6):1407-1424. [4] MARTIN M L M, MBANG J, LUBUMA J, et al. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers[J]. Math Biosci Eng, 2016, 13(4):813-840. [5] 王生福, 聂麟飞. 具有随机干扰和无症状感染者的疟疾模型研究[J]. 四川师范大学学报(自然科学版), 2020, 43(5):601-607. WANG Shengfu, NIE Linfei. Study of malaria model with random disturbance and asymptomatic infection[J]. Journal of Sichuan Normal University(Natural Science), 2020, 43(5):601-607. [6] DOBROVOLNY H M. Modeling the role of asymptomatics in infection spreadwith application to SARS-CoV-2[J]. PLoS ONE, 2020, 15(8):e0236976. [7] CHEN Xingguang. Infectious disease modeling and epidemic response measures analysis considering asymptomatic infection[J]. IEEE Access, 2020, 8(1):149652-149660. [8] TANG Biao, BRAGAZZI N L, LI Qian, et al. An updated estimation of the risk of transmission of the novel coronavirus(2019-nCov)[J]. Infect Dis Model, 2020, 5(1):248-255. [9] VANLANDINGHAM K E. Relapse of herpes simplex encephalitis after conventional acyclovir therapy[J]. JAMA, 1988, 259(7):1051-1053. [10] DRIESSCHE P V D, ZOU Xingfu. Modeling relapse in infectious diseases[J]. Math Bio, 2007, 207(1):89-103. [11] 朱承澄. 具有复发的SIR扩散流行病模型的动力学行为[D]. 兰州:兰州大学, 2018. ZHU Chengcheng. Dynamic behaviour of a relapse SIR diffusion epidemic model[D]. Lanzhou: Lanzhou University, 2018. [12] 穆宇光, 徐瑞. 一类具有饱和发生率和复发的随机SIRI模型的稳定性[J]. 应用数学, 2019, 32(3):570-580. MU Yuguang, XU Rui. Stability of a stochastic SIRI model with saturated incidence and relapse[J]. Math Appl, 2019, 32(3):570-580. [13] YAN Dongxue, ZOU Xingfu. Dynamics of an epidemic model with relapse over a two-patch environment[J]. Math Biosci Eng, 2020, 17(5):6098-6127. [14] FENG Xiaomei, TENG Zhidong, ZHANG Fengqin. Global dynamics of a general class of multi-group epidemic models with latency and relapse[J]. Math Biosci Eng, 2015, 12(1):99-115. [15] ZOU Xingfu, WANG Lin, DRIESSCHE P V D. Modeling disease with latencecy and relapse[J]. Math Biosci Eng, 2007, 4(2):205-219. [16] DING Qian, LIU Yunfeng, CHEN Yuming, et al. Dynamics of a reaction-diffusion SIRI model with relapse and free boundary[J]. Math Bio Eng, 2020, 17(2):1659-1676. [17] LIU Fang, CAI Zhaobin, HUANG Jinsong, et al. Repeated COVID-19 relapse during post-discharge surveillance with viral shedding lasting for 67 days in a recovered patient infected with SARS-CoV-2-ScienceDirect[J]. J Microbiol Immunol, 2020, 54(1):101-104. [18] MUTLU E, YACOLU A. Relapse in patients with serious mental disorders during the COVID-19 outbreak: a retrospective chart review from a community mental health center[J]. Eur Arch Psy Clin N, 2020, 271(4):381-383. [19] ZHANG Tailei, TENG Zhidong. On a nonautonomous SEIRS model in epidemiology[J]. B Math Biol, 2007, 69(8):2537-2559. [20] DRIESSCHE P V D, WATMOUGH J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Math Bio, 2002, 180(1/2):29-48. [21] THIEME, HORST R. Persistence under relaxed point-dissipativity(with application to an endemic model)[J]. Siam J Math Anal, 1993, 24(2):407-435. [22] ZHAO Xiaoqiang. Uniform persistence and periodic coexistence states in infinite-dimensional periodic semiflows with applications[J]. Can Appl Math Q, 1995, 3(3):473-495. [23] 中国疾病预防控制中心.截至1月11日—1月25日24时新型冠状病毒肺炎疫情最新情况[EB/OL].(2020-01-12—2020-01-26)[2020-10-14]. https://www.chinacdc.cn/jkzt/crb/zl/szkb_11803/jszl_11809/. [24] 国家卫生健康委员会.武汉市卫生健康委员会关于新型冠状病毒感染的肺炎情况通报[EB/OL].(2020-01-12—2020-01-26)[2020-10-14]. http://www.nhc.gov.cn/xcs/yqtb/list_gzbd_26.shtml. [25] YAN Qinling, TANG Yingling, YAN Dingding, et al. Impact of media reports on the early spread of COVID-19 epidemic[J]. J Theor Biol, 2020, 502(1):1-13. [26] World Health Organization(WHO). Statement on the first meeting of the International Health Regulations(2005)Emergency Committee regarding the outbreak of novel coronavirus(2019-nCoV)[EB/OL].(2020-01-23)[2020-10-15]. https://www.who.int/news/item/23-01-2020-statement-on-the-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov). [27] TANG Biao, WANG Xia, LI Qian, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. J Clin Med, 2020, 9(2):462. [28] 武汉市统计局. 2019年武汉市国民经济和社会发展统计公报[EB/OL].(2020-03-29)[2020-10-15]. http://tjj.wuhan.gov.cn/tjfw/tjgb/202004/t20200429_1191417.shtml. |
[1] | SHEN Wei, ZHANG Cun-hua. Multiple stability switches and Hopf bifurcation in a time-delay predator-prey system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 42-49. |
[2] | ZHU Yan-lan, ZHOU Wei, CHU Tong, LI Wen-na. Complex dynamic analysis of the duopoly game under management delegation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 32-45. |
[3] | ZHOU Yan, ZHANG Cun-hua. Stability and Turing instability of a predator-prey reaction-diffusion system with schooling behavior [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 73-81. |
[4] | GUO Hui-ying, YANG Fu-xia, ZHANG Cui-ping. Stability of modules with finite Ext-strongly Ding projective dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 31-38. |
[5] | LU Chang-na, CHANG Sheng-xiang. Finite element method of Cahn-Hilliard equation based on adaptive moving mesh method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(12): 17-25. |
[6] | Jie TANG,Ling WEI,Rui-si REN,Si-yu ZHAO. Granule description using possible attribute analysis [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(1): 75-82. |
[7] | YANG Zhong-liang, GUO Gai-hui. Bifurcation analysis of positive solutions for a predator-prey model with B-D functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(7): 9-15. |
[8] | YANG Yang, WU Bao-wei, WANG Yue-e. Input-output finite time stability of asynchronous switched systems with event-triggered [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 118-126. |
[9] | WEN Xiao, LIU Qi, GAO Zhen, DON Wai-sun, LYU Xian-qing. Application of local non-intrusive reduced basis method in Rayleigh-Taylor instability [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 109-117. |
[10] | CHEN Lu, ZHANG Xiao-guang. Research of an epidemic model on adaptive networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 76-82. |
[11] | WANG Zhan-ping, YUAN Kai-ying. Strongly Gorenstein injective modules with respect to a cotorsion pair [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 102-107. |
[12] | FENG Na-na, WU Bao-wei. Input-output finite time stability for event-triggered control of switched singular systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(3): 75-84. |
[13] | ZHANG Yu, ZHAO Ren-yu. Gorenstein FP-projective modules and its stability [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 79-85. |
[14] | DAI Li-hua, HUI Yuan-xian. Almost automorphic solutions for shunting inhibitory cellular neural networks with leakage delays on time scales [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(10): 97-108. |
[15] | LIU Hua, YE Yong, WEI Yu-mei, YANG Peng, MA Ming, YE Jian-hua, MA Ya-lei. Study of dynamic of a discrete host-parasitoid model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 30-38. |
|