JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (9): 94-104.doi: 10.6040/j.issn.1671-9352.0.2022.430

Previous Articles     Next Articles

Incomplete neighborhood weighted multi-granularity decision-theoretic rough sets and three-way decision

Qian WANG1,2(),Xianyong ZHANG1,2,*()   

  1. 1. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan, China
    2. Institute of Intelligent Information and Quantum Information, Sichuan Normal University, Chengdu 610066, Sichuan, China
  • Received:2022-08-19 Online:2023-09-20 Published:2023-09-08
  • Contact: Xianyong ZHANG E-mail:2055778250@qq.com;xianyongzh@sina.com

Abstract:

Concerning the differences and imbalances of granularities, the classification capacity of granularity is considered to mine the granularity weight, and two rough set models based on the granularity weighting strategy are constructed to implement three-way decision. At first, the granularity significance is defined by the influence of boundary region for knowledge classification, and it induces the granularity weight; by fusing the granularity weights and condition probabilities, incomplete neighborhood weighted multi-granularity decision-theoretic rough sets are modeled to establish three-way decision. Then considering the specific restriction of important attribute, incomplete neighborhood weighted-restrictive multi-granularity decision-theoretic rough sets are further proposed, and relevant properties and mutual relationships are acquired. At last, example demonstrations and data experiments are performed by variable three-way decision, and the rationality and superiority of new models are verified. Regarding incomplete neighborhood multi-granularity decision-theoretic rough sets, the two weighted models optimally improve and systematically extend corresponding basic models, and they facilitate relevant data analysis and decision making.

Key words: incomplete neighborhood information system, multi-granularity rough set, decision-theoretic rough set, three-way decision, granularity significance

CLC Number: 

  • TP18

Table 1

Information sheet of three good student assessment"

U A B C class
a1 a2 b1 b2 c1 c2
u1 0.47 0.66 0.76 0.61 0.43 0.31 0
u2 0.73 0.62 0.54 0.76 0.56 0.44 1
u3 0.21 * 0.35 0.26 0.46 0.59 0
u4 0.76 0.61 0.87 0.67 0.26 0.19 1
u5 0.45 0.54 0.67 * 0.75 0.66 0
u6 0.88 0.78 0.34 0.47 0.56 0.62 1
u7 0.17 0.23 0.45 0.36 0.45 0.52 0
u8 0.95 0.86 0.76 0.64 0.67 * 1
u9 0.65 0.57 * 0.57 0.34 0.27 0
u10 0.87 0.81 0.88 0.76 0.47 0.58 1
u11 * 0.64 0.62 0.59 0.54 0.62 0
u12 0.31 0.46 0.46 0.71 0.74 0.65 1

Table 2

Cost function of three good student assessment"

Γ X ~X
aP $\tilde{\lambda}_{\mathrm{PP}}=[0,0.2]$ $\tilde{\lambda}_{\mathrm{PN}}=[0.8,1.2]$
aB $\tilde{\lambda}_{\mathrm{BP}}=[0.2,0.6]$ $\tilde{\lambda}_{\mathrm{BN}}=[0.3,0.6]$
aN $\tilde{\lambda}_{\mathrm{NP}}=[0.8,1.2]$ $\tilde{\lambda}_{\mathrm{NN}}=[0.2,0.4]$

Table 3

Three-way regions of optimistic, pessimistic and average models of multi-granularity decision-theoretic rough sets"

模型 k POS(X);NEG(X);BND(X)
乐观 0.0 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
0.2 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
0.4 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
0.6 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
0.8 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
1.0 {u2, u4, u6, u8, u10};{u1, u3, u5, u7, u9, u11, u12};Ø
悲观 0.0 Ø;{u2, u4, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
0.2 Ø;{u2, u4, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
0.4 {u4};{u2, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
0.6 {u4};{u2, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
0.8 {u4};{u2, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
1.0 {u4};{u2, u6, u8, u10, u12};{u1, u3, u5, u7, u9, u11}
平均 0.0 {u2, u4, u6, u10};{u1, u5, u8, u9, u11, u12};{u3, u7}
0.2 {u2, u4, u6, u10};{u5, u8, u9, u11, u12};{u1, u3, u7}
0.4 {u2, u4, u6, u10};{u5, u8, u9, u11, u12};{u1, u3, u7}
0.6 {u2, u4, u6, u8, u10};{u5, u9, u11, u12};{u1, u3, u7}
0.8 {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}
1.0 {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}

Table 4

Three-way regions of two weighted models of multi-granularity decision-theoretic rough sets"

模型 k $\left(\operatorname{Sig}_{A}(X),\operatorname{Sig}_{B}(X),\operatorname{Sig}_{C}(X)\right)$ $\operatorname{POS}(X) ; \operatorname{NEG}(X) ; \operatorname{BND}(X)$
加权 0.0 (0.5, 0.5, 0.333) {u2, u4, u6, u10};{u3, u5, u8, u9, u11, u12};{u1, u7}
0.2 (0.5, 0.5, 0.333) {u2, u4, u6, u10};{u5, u8, u9, u11, u12};{u1, u3, u7}
0.4 (0.583, 0.5, 0.667) {u2, u4, u6, u8, u10};{u5, u9, u11, u12};{u1, u3, u7}
0.6 (0.583, 0.5, 0.667) {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}
0.8 (0.333, 0.286, 0.381) {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}
1.0 (0.32, 0.32, 0.36) {u2, u4, u6, u8, u10};{u5, u11, u12};{u1, u3, u7, u9}
加权限制 0.0 (0.5, 0.5, 0.333) {u2, u4, u10};{u5, u8, u12};{u1, u3, u6, u7, u9, u11}
0.2 (0.5, 0.5, 0.333) {u2, u4, u10};{u5, u8, u12};{u1, u3, u6, u7, u9, u11}
0.4 (0.583, 0.5, 0.667) {u2, u4, u8, u10};{u5, u12};{u1, u3, u6, u7, u9, u11}
0.6 (0.583, 0.5, 0.667) {u2, u4, u8, u10};{u5, u12};{u1, u3, u6, u7, u9, u11}
0.8 (0.333, 0.286, 0.381) {u2, u4, u8, u10};{u5, u12};{u1, u3, u6, u7, u9, u11}
1.0 (0.32, 0.32, 0.36) {u2, u4, u8, u10};{u5, u12};{u1, u3, u6, u7, u9, u11}

Table 5

UCI datasets description"

编号 数据集 对象数 条件属性数 决策类数
(a) Wine 178 13 3
(b) Wpbc 198 33 2
(c) Wdbc 569 30 2
(d) Sonar 208 60 2

Table 6

Cost function"

Γ X ~X
aP $\tilde{\lambda}_{\mathrm{PP}}=[0,0]$ $\tilde{\lambda}_{\mathrm{PN}}=[0.9,1.1]$
aB $\tilde{\lambda}_{\mathrm{BP}}=[0.15,0.35]$ $\tilde{\lambda}_{\mathrm{BN}}=[0.02,0.22]$
aN $\tilde{\lambda}_{\mathrm{NP}}=[0.26,0.46]$ $\tilde{\lambda}_{\mathrm{NN}}=[0,0]$

Fig.1

Positive region size variation of three models of multi-granularity decision-theoretic rough sets"

Fig.2

Boundary region size variation of three models of multi-granularity decision-theoretic rough sets"

Fig.3

Negative region size variation of three models of multi-granularity decision-theoretic rough sets"

1 张清华, 薛玉斌, 胡峰, 等. 粗糙集近似不确定性研究[J]. 电子学报, 2016, 44 (7): 1574- 1580.
doi: 10.3969/j.issn.0372-2112.2016.07.008
ZHANG Qinghua , XUE Yubing , HU Feng , et al. Research on uncertainty of approximation aet of rough set[J]. Acta Electronica Siniga, 2016, 44 (7): 1574- 1580.
doi: 10.3969/j.issn.0372-2112.2016.07.008
2 钱文彬, 彭莉莎, 王映龙, 等. 不完备混合决策系统的三支决策模型与规则获取方法[J]. 计算机应用研究, 2020, 37 (5): 1421- 1427.
doi: 10.19734/j.issn.1001-3695.2018.10.0806
QIAN Wenbin , PENG Lisha , WANG Yinglong , et al. Three-way decision model and rule acquisition method for incomplete composite decision system[J]. Application Research of Computers, 2020, 37 (5): 1421- 1427.
doi: 10.19734/j.issn.1001-3695.2018.10.0806
3 XIE Jingjing , HU Baoqing , JIANG Haibo . A novel method to attribute reduction based on weighted neighborhood probabilistic rough sets[J]. International Journal of Approximate Reasoning, 2022, 144, 1- 17.
doi: 10.1016/j.ijar.2022.01.010
4 ABBRUZZES R , GAETA A , LOIA V , et al. Detecting influential news in online communities: an approach based on hexagons of opposition generated by three-way decisions and probabilistic rough sets[J]. Information Sciences, 2021, 578, 364- 337.
doi: 10.1016/j.ins.2021.07.014
5 BARMAN B , PATRA S . Variable precision rough set based unsupervised band selection technique for hyperspectral image classification[J]. Knowledge-Based Systems, 2020, 193, 105414.
doi: 10.1016/j.knosys.2019.105414
6 ZHANG Di , ZHU Ping . Variable radius neighborhood rough sets and attribute reduction[J]. International Journal of Approximate Reasoning, 2022, 150, 98- 121.
doi: 10.1016/j.ijar.2022.08.005
7 YANG Xiaoling , CHEN Hongmei , LI Tianrui , et al. Neighborhood rough sets with distance metric learning for feature selection[J]. Knowledge-Based Systems, 2021, 224, 107076.
doi: 10.1016/j.knosys.2021.107076
8 孙林, 梁娜, 徐久成. 基于自适应邻域互信息与谱聚类的特征选择[J]. 山东大学学报(理学版), 2022, 57 (12): 13- 24.
SUN Lin , LIANG Na , XU Jiucheng . Feature selection using adaptive neighborhood mutual information and spectral clustering[J]. Journal of Shandong University (Nature Science), 2022, 57 (12): 13- 24.
9 LIANG Pei , LEI Dingfei , CHIN Kwaisang , et al. Feature selection based on robust fuzzy rough sets using kernel-based similarity and relative classification uncertainty measures[J]. Knowledge-Based Systems, 2022, 225, 109795.
10 刘盾, 李天瑞, 杨新, 等. 三支决策: 基于粗糙集与粒计算研究视角[J]. 智能系统学报, 2019, 14 (6): 1111- 1120.
LIU Dun , LI Tianrui , YANG Xin , et al. Three-way decisions: research perspectives for rough sets and granular computing[J]. CAAI Transactions on Intelligent Systems, 2019, 14 (6): 1111- 1120.
11 YAO Yiyu . Three-way decision and granular computing[J]. International Journal of Approximate Reasoning, 2018, 103, 107- 123.
doi: 10.1016/j.ijar.2018.09.005
12 QIAN Yuhua , LI Shunyong , LIANG Jiye , et al. Pessimistic rough set based decisions: a multi-granulation fusion strategy[J]. Information Sciences, 2014, 264 (20): 196- 210.
13 YUAN Jingling , CHEN Mincheng , JIANG Tao , et al. Complete tolerance relation based parallel filling for incomplete energy big data[J]. Knowledge-Based Systems, 2017, 132 (15): 215- 225.
14 GE Hao , YANG Chuanjian , XU Yi . Incremental updating three-way regions with variations of objects and attributes in incomplete neighborhood systems[J]. Information Sciences, 2022, 584, 479- 502.
doi: 10.1016/j.ins.2021.10.046
15 刘丹, 徐立新, 李敬伟. 不完备邻域多粒度决策理论粗糙集与三支决策[J]. 计算机应用与软件, 2019, 36 (5): 145- 157.
LIU Dan , XU Lixin , LI Jinwei . Incomplete neighborhood multi-granulation decision-theoretic rough set and three-way decision[J]. Computer Applications and Software, 2019, 36 (5): 145- 157.
16 张贤勇, 苗夺谦, 王国胤, 等. 三支决策与三层分析[M]. 北京: 科学出版社, 2022.
ZHANG Xianyong , MIAO Duoqian , WANG Guoyin , et al. Three-way decision and three-level analysis[M]. Beijing: Science Press, 2022.
17 徐怡, 李宝峰, 李策. 基于权重分布的多粒度粗糙集模型[J]. 模糊系统与数学, 2020, 34 (6): 55- 67.
XU Yi , LI Baofeng , LI Ce . Multi-granulation rough set model based on weight distribution[J]. Fuzzy System and Mathematics, 2020, 34 (6): 55- 67.
18 ZHAO Hua , QIN Keyun . Mixed feature selection in incomplete decision table[J]. Knowledge-Based Systems, 2014, 57, 181- 190.
19 QIANG Yuhua , ZHANG Hu , SANG Yanli , et al. Multigranulation decision-theoretic rough sets[J]. International Journal of Approximate Reasoning, 2014, 55 (1): 225- 237.
20 苗夺谦, 李道国. 粗糙集理论、算法与应用[M]. 北京: 清华大学出版社, 2008: 37- 43.
MIAO Duoqian , LI Daoguo . Rough sets theory algorithms and applications[M]. Beijing: Tsinghua University Press, 2008: 37- 43.
[1] Junyu WANG,Yafeng YANG,Jingxuan XUE,Lihong LI. Extension sequential three-way decision model and its application [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 67-79.
[2] FAN Jia-chen, WANG Ping-xin, YANG Xi-bei. Density-sensitive spectral clustering based on three-way decision [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 59-66.
[3] QIAN Jin, TANG Da-wei, HONG Cheng-xin. Research on multi-granularity hierarchical sequential three-way decision model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 33-45.
[4] GONG Zeng-tai, TA Guang-peng. Semantics of the soft set induced by intuitionistic fuzzy set and its three-way decision [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 68-76.
[5] SHI Ji, SUO Zhong-ying. Loss function determination method based on interval number analytic hierarchy process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(5): 28-37.
[6] YANG Jie, LUO Tian, LI Yang-jun. Unlabeled sequential three-way decisions model based on TOPSIS [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(3): 41-48.
[7] LI Min, YANG Ya-feng, LEI Yu, LI Li-hong. Optimal granularity selection based on minimum cost of extension domain change [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(2): 17-27.
[8] LIN Yan-li, LIU Xiao-dong. Research on local double relative quantitative decision-theoretic rough set for incomplete ordered information system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 89-97.
[9] Ying YU,Xin-nian WU,Le-wei WANG,Ying-long ZHANG. A multi-label three-way classification algorithm based on label correlation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 81-88.
[10] JI Ru-ya, WEI Ling, REN Rui-si, ZHAO Si-yu. Pythagorean fuzzy three-way concept lattice [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(11): 58-65.
[11] LIU Guo-tao, ZHANG Yan-ping, XU Chen-chu. Three-way decisions model based on the optimal center covering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 105-110.
[12] ZHANG Li-bo, LI Hua-xiong, ZHOU Xian-zhong, HUANG Bing. Multi-granularity cost-sensitive three-way decision for face recognition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 48-57.
[13] DU Li-na, XU Jiu-cheng, LIU Yang-yang, SUN Lin. Research on the evaluation of venture investment based on the risk minimization of three-way decision [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 66-72.
[14] ZHANG Cong, YU Hong. An incremental three-way decisions soft clustering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 40-47.
[15] TIAN Hai-long, ZHU Yan-hui, LIANG Tao, MA Jin, LIU Jing. Research on identificating Chinese micro-blog opinion sentence based on three-way decisions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(08): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[3] ZHANG Jing-you, ZHANG Pei-ai, ZHONG Hai-ping. The application of evolutionary graph theory in the design of knowledge-based enterprises’ organization strucure[J]. J4, 2013, 48(1): 107 -110 .
[4] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[5] SUN Xiao-ting1, JIN Lan2*. Application of DOSY in oligosaccharide mixture analysis[J]. J4, 2013, 48(1): 43 -45 .
[6] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[7] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[8] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[9] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[10] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .