JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (11): 15-26.doi: 10.6040/j.issn.1671-9352.0.2022.317
Previous Articles Next Articles
Cuiyun ZHANG(),Jingjun GUO*(),Aiqin MA
CLC Number:
1 |
VASICEK O . An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5 (2): 177- 188.
doi: 10.1016/0304-405X(77)90016-2 |
2 | PRAKASA-RAO B L S . Statistical inference from sampled data for stochastic processes[J]. Contemp Math, 1988, 80, 249- 284. |
3 |
VALDIVIESO L , SCHOUTENS W , TUERLINCKX F . Maximum likelihood estimation inprocesses of Ornstein-Uhlenbeck type[J]. Statistical Inference for Stochastic Processes, 2009, 12 (1): 1- 19.
doi: 10.1007/s11203-008-9021-8 |
4 |
ZHANG Pu , XIAO Weilin , ZHANG Xili , et al. Parameter identification for fractional Ornstein-Uhlenbeck processes based on discrete observation[J]. Economic Modelling, 2014, 36, 198- 203.
doi: 10.1016/j.econmod.2013.09.004 |
5 |
ZHANG Shibin , ZHANG Xinsheng . A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric α-stable motions[J]. Annals of the Institute of Statistical Mathematics, 2013, 65 (1): 89- 103.
doi: 10.1007/s10463-012-0362-0 |
6 |
SHEN Guangjun , WANG Qinbo , YIN Xiuwei . Parameter estimation for the discretely observed Vasicek model with small fractional Lévy noise[J]. Acta Mathematica Sinica (English Series), 2020, 36 (4): 443- 461.
doi: 10.1007/s10114-020-9121-y |
7 | BOJDECKI T , GOROSTIZA L G , TALARCAYK A . Sub-fractional Brownian motion and its relation to occupation times[J]. Statistics & Probability Letters, 2004, 69 (4): 405- 419. |
8 |
MENDY I . Parametric estimation for sub-fractional Ornstein-Uhlenbeck process[J]. Journal of Statistical Planning and Inference, 2013, 143 (4): 663- 674.
doi: 10.1016/j.jspi.2012.10.013 |
9 |
KUANG Nenghui , XIE Huantian . Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk[J]. Annals of the Institute of Statistical Mathematics, 2015, 67 (1): 75- 91.
doi: 10.1007/s10463-013-0439-4 |
10 |
LI Shengfeng , DONG Yi . Parametric estimation in the Vasicek-type model driven by sub-fractional Brownian motion[J]. Algorithms, 2018, 11 (12): 197- 215.
doi: 10.3390/a11120197 |
11 |
XIAO Weilin , ZHANG Xili , ZUO Ying . Least squares estimation for the drift parameters in the sub-fractional Vasicek processes[J]. Journal of Statistical Planning and Inference, 2018, 197, 141- 155.
doi: 10.1016/j.jspi.2018.01.003 |
12 | 申广君, 何坤, 闫理坦. 次分数布朗运动的几点注记[J]. 山东大学学报(理学版), 2011, 46 (3): 102- 108. |
SHEN Guangjun , HE Kun , YAN Litan . Remarks on sub-fractional Brownian motion[J]. Journal of Shandong University (Natural Science), 2011, 46 (3): 102- 108. | |
13 |
TUDOR C . Some properties of the sub-fractional Brownian motion[J]. Stochastics An International Journal of Probability and Stochastic Processes, 2007, 79 (5): 431- 448.
doi: 10.1080/17442500601100331 |
[1] | FENG Xue, GENG Sheng-ling, LI Yong-ming. Weighted hesitation fuzzy preference relation and its application in group decision making [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(3): 39-47. |
[2] | Shimiao ZHANG,Yan LYU. Parameter estimation for competitive Lotka-Volterra model with Lévy noise [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 24-31. |
[3] | HUANG Qin-mei, KOU Jun-ke. Consistency of wavelet estimator for regression model with mixed noise [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 25-30. |
[4] | AN Xiang, GUO Jing-jun. Pricing and simulation of lookback options under the mixed sub-fractional jump-diffusion model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 100-110. |
[5] | CHANG Li-na, WEI Ling. Rules acquisition based on OE-approximate concept lattice in incomplete formal decision contexts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(11): 31-37. |
[6] | PENG Bo, GUO Jing-jun. Asset pricing and simulation under the environment of jumping and mixed Gaussian process [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(5): 105-113. |
[7] | LI Yong-ming, NIE Cai-ling, LIU Chao, GUO Jian-hua. Consistency of estimator of nonparametric regression function for arrays of rowwise NSD [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 69-74. |
[8] | HU Xue-ping, ZHANG Hong-mei. Convergence properties of the kernel-type density estimator under WOD dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 21-25. |
[9] | LI Yong-ming, DENG Shao-jian, JIANG Wei-hong. Consistencies of recursive estimator of a probability density for extended negatively dependent samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 54-59. |
[10] | WU Da-yong, LI Feng. Maximum empirical likelihood estimation in nonlinear semiparametric regression models with missing data [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(04): 20-23. |
[11] | WU Xin-ye, WU Qun-ying. The r-th rate of consistency in kernel density estimation for #br# φ-mixed random censored samples [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(1): 105-110. |
[12] | LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors [J]. J4, 2013, 48(1): 83-88. |
[13] | YE Cai-yuan, WU Qun-ying*, WU Xin-ye. Consistency NA samples kernel density estimation for censored data [J]. J4, 2013, 48(09): 40-45. |
[14] | SHEN Guang-jun 1,2, HE Kun 3, YAN Li-tan 3. Remarks on sub-fractional Brownian motion [J]. J4, 2011, 46(3): 102-108. |
[15] | WANG Ji-rong1, CAO Xiao-hong2, LIU Jun-ying2. Operators with consistency in Fredholm and Weyl′s theorem [J]. J4, 2011, 46(1): 87-91. |