JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (7): 85-94.doi: 10.6040/j.issn.1671-9352.1.2023.064

• Review • Previous Articles     Next Articles

Category-wise knowledge probers for representation learning of graph neural networks

Xingyu HUANG1,2(),Mingyu ZHAO1,3,Ziyu LYU1,2,*()   

  1. 1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
    2. School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen 518107, Guangdong, China
    3. University of Chinese Academy of Sciences, Beijing 100101, China
  • Received:2023-11-24 Online:2024-07-20 Published:2024-07-15
  • Contact: Ziyu LYU E-mail:huangxyu@mail.ustc.edu.cn;luziyucrystal@163.com

Abstract:

In order to solve the problem that the graph neural network model lacks corresponding probes, a knowledge detection framework for graph neural network representation learning is proposed, and two kinds of class-aware knowledge probes are designed based on the category attributes of data in different domains, namely clustering probes and contrastive clustering probes. The two probe the characterization effect of different models and give corresponding scores. On 8 datasets in 3 neighborhoods, including reference networks, social networks and biological networks, the representation learning of 7 classical graph neural network models realizes systematic knowledge detection and evaluation experiments, and summarizes the detection and evaluation conclusions.

Key words: graph neural network, knowledge probing, model evaluation, representation learning

CLC Number: 

  • TP391

Fig.1

Method for category-probe"

Fig.2

Category information and spatial distribution in feature vectors"

Table 1

Spectral domain and spatial graph convolution neural network under test"

图嵌入模型图 神经网络 特点 下游任务
节点分类 边预测 图分类
谱域 Chebyshev 切比雪夫多项式近似拟合
SSGCN 马尔可夫扩散核
空域 GCN 拉普拉斯正则项
LightGCN 推荐任务中的简化GCN
GraphSAGE 随机定长采样策略
GAT 自注意力机制
GIN 可微分非线性函数

Table 2

Graph embedding model results on different downstream tasks (link prediction Recall@20)"

神经网络 节点分类直推式 节点分类归纳式 边预测 图分类
Cora Citeseer PPI Flickr Yelp MovieLens MUTAG ENZYMES
Chebyshev 20.1* 19.9 45.8 44.0 5.10* 5.75* 71.7 20.0
SSGCN 43.6 29.1 38.8 44.8 8.87 7.09 61.5 18.3
GCN 35.8 26.3 46.1 43.9 8.72 6.55 66.7 17.5
LightGCN 21.6 18.1 39.6 45.2 5.27 6.62 61.5 15.0*
GraphSAGE 39.3 21.7 38.7* 42.8* 7.27 7.78 74.4 15.8
GAT 47.8 35.0 43.3 45.4 7.18 6.20 61.4* 20.8
GIN 40.2 25.0 45.7 45.3 7.46 7.82 71.8 20.8
MLP 15.8 16.4* 39.6 45.3 5.14 7.05 71.8 17.5

Table 3

The scores of cluster probe of each model"

特征初始化 神经网络 直推式 归纳式
节点分类 边预测 节点分类 图分类
Cora Citeseer Pubmed Cora Citeseer Pubmed Flickr Mutag Proteins Enzymes
rand64 Chebyshev 12.009 20.165 72.238 31.191 42.054 91.277 39.503 0.973 1.840 2.690
SSGCN 5.486 14.794 32.226 10.837 19.565 22.696 55.523 4.210* 3.360 9.800
GCN 5.768 12.439 37.887 13.860 25.343 36.635 48.492 1.330 2.140 3.280
LightGCN 13.457 22.640 80.393 21.463 41.126 48.426 67.668* 4.190 4.010* 9.920*
GraphSAGE 4.861 16.684 31.617 40.150* 72.680* 226.829 20.293 1.030 1.710 3.180
GAT 4.130 9.288 13.888 13.624 18.929 39.145 29.749 1.890 2.590 3.390
GIN 4.685 8.543 11.721 8.953 17.695 15.999 25.363 2.380 3.600 6.370
MLP 25.708* 51.193* 130.612* 38.894 50.574 304.132* 59.705 1.130 2.130 4.650
meta Chebyshev 1.414 2.288 1.411 43.538* 48.376* 363.183* 10.549 0.955 1.760 2.650
SSGCN 1.156 2.126 1.486 4.705 5.079 40.599 15.900 1.020* 1.790 11.100
GCN 1.139 2.080 1.372 6.107 6.347 36.815 9.352 0.959 1.830* 4.270
LightGCN 1.404 2.202 1.559 11.948 13.196 5.316 11.857 1.020* 1.790 13.000*
GraphSAGE 1.213 2.672 1.328 40.289 44.554 56.649 10.009 1.020* 1.790 2.970
GAT 1.116 2.077 1.370 6.985 5.356 23.751 11.535 0.977 1.800 6.250
GIN 2.403 3.990 3.784* 5.945 6.143 2.281 20.049* 0.941 1.660 4.320
MLP 3.644* 4.808* 3.674 16.824 37.931 33.164 8.206 0.929 1.790 2.590

Table 4

Comparison of clustering probe scores for each model"

特征初始化 神经网络 直推式 归纳式
节点分类 边预测 节点分类 图分类
Cora Citeseer Pubmed Cora Citeseer Pubmed Flickr Mutag Proteins Enzymes
rand64 Chebyshev 9.792 28.594 128.167* 31.398 60.836 135.442 23.610 0.736 0.873 1.558
SSGCN 3.309 12.486 13.542 6.364 10.814 8.344 32.690 1.174 1.962 5.921
GCN 4.696 16.306 100.546 8.339 29.539 19.237 74.333* 0.905 0.853 1.571
LightGCN 8.637 16.282 45.771 19.462 35.508 32.117 31.168 1.052 1.969 5.806
GraphSAGE 4.394 23.678 32.052 38.923 86.968 41.095 18.306 0.447 0.828 1.619
GAT 2.954 7.742 11.671 41.778* 107.861* 173.833* 23.108 0.743 0.976 2.373
GIN 2.927 5.268 4.172 8.644 15.958 10.836 20.066 2.137* 2.117* 8.019*
MLP 48.342* 79.993* 69.205 35.218 48.810 68.031 36.763 0.739 1.274 3.300
meta Chebyshev 1.463 2.018 1.309 20.779 54.636* 24.330 9.315 1.082* 1.943 1.981
SSGCN 1.189 2.181 1.293 2.193 2.528 19.252 9.310 1.009 1.839 7.900
GCN 1.328 1.940 1.273 4.800 6.845 21.449 17.373 0.921 1.819 3.130
LightGCN 1.506 1.953 1.241 6.965 12.028 5.045 11.320 0.867 1.929 10.163*
GraphSAGE 1.159 2.231 1.535 45.428* 45.748 44.089* 10.774 0.928 1.288 1.216
GAT 1.162 2.041 1.233 6.178 8.451 38.720 9.696 0.850 1.850 7.037
GIN 1.864 3.143 1.727 4.223 4.336 3.066 12.154 0.772 2.095* 2.630
MLP 2.602* 3.897* 1.846* 11.797 16.880 13.051 19.922* 0.859 1.799 1.889

Fig.3

Graph embedding models in radar charts"

1 GONG Liyu, CHENG Qiang. Exploiting edge features for graph neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019: 9203-9211.
2 VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2017-12-20)[2023-11-24]. http://arxiv.org/abs/1710.10903.
3 FAN Wenqi, MA Yao, LI Qing, et al. Graph neural networks for social recommendation[C]//The World Wide Web Conference. San Francisco: ACM, 2019: 417-426.
4 CHAUDHARY A, MITTAL H, ARORA A. Anomalydetection using graph neural networks[C]//2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). Faridabad: IEEE, 2019: 346-350.
5 GUO Zhiwei , WANG Heng . A deep graph neural network-based mechanism for social recommendations[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (4): 2776- 2783.
doi: 10.1109/TII.2020.2986316
6 RATHI P C , LUDLOW R F , VERDONK M L . Practical high-quality electrostatic potential surfaces for drug discovery using a graph-convolutional deep neural network[J]. Journal of Medicinal Chemistry, 2020, 63 (16): 8778- 8790.
doi: 10.1021/acs.jmedchem.9b01129
7 XIONG Zhaoping , WANG Dingyan , LIU Xiaohang , et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism[J]. Journal of Medicinal Chemistry, 2019, 63 (16): 8749- 8760.
8 YE Xianbin , GUAN Quanlong , LUO Weiqi , et al. Molecular substructure graph attention network for molecular property identification in drug discovery[J]. Pattern Recognition, 2022, 128, 108659.
doi: 10.1016/j.patcog.2022.108659
9 PETRONI F, ROCKTÄSCHEL T, LEWIS P, et al. Language models as knowledge bases?[EB/OL]. (2019-09-03)[2023-11-24]. http://arxiv.org/abs/1909.01066.
10 DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona: ACM, 2016: 3844-3852.
11 ZHU H, KONIUSZ P. Simple spectral graph convolution[C/OL]//International Conference on Learning Representations. Vienna, Austria, 2021: 1-15. https://openreview.net/pdf?id=CYO5T-YjWZV.
12 HE Xiangnan, DENG Kuan, WANG Xiang, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. [S. l. ]: ACM, 2020: 639-648.
13 HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. California: ACM, 2017: 1025-1035.
14 XU K, HU W H, LESKOVEC J, et al. How powerful are graph neural networks?[EB/OL]. (2018-12-26)[2023-11-24]. http://arxiv.org/abs/1810.00826.
15 BELINKOV Y, DURRANI N, DALVI F, et al. What do neural machine translation models learn about morphology?[EB/OL]. (2017-05-15)[2023-11-24]. http://arxiv.org/abs/1704.03471.
16 ADI Y, KERMANY E, BELINKOV Y, et al. Fine-grained analysis of sentence embeddings using auxiliary prediction tasks[EB/OL]. (2016-09-11)[203-11-24]. http://arxiv.org/abs/1608.04207.
17 CONNEAU A, KRUSZEWSKI G, LAMPLE G, et al. What you can cram into a single vector: probing sentence embeddings for linguistic properties[EB/OL]. (2018-05-03)[2023-11-24]. http://arxiv.org/abs/1805.01070.
18 HUPKES D , VELDHOEN S , ZUIDEMA W . Visualisation and 'diagnostic classifiers' reveal how recurrent and recursive neural networks process hierarchical structure[J]. Journal of Artificial Intelligence Research, 2018, 61, 907- 926.
doi: 10.1613/jair.1.11196
19 PIMENTEL T, VALVODA J, MAUDSLAY R H, et al. Information-theoretic probing for linguistic structure[EB/OL]. (2020-04-07)[2023-11-24]. http://arxiv.org/abs/2004.03061.
20 WU Zhiyong, CHEN Yun, KAO Ben, et al. Perturbed masking: parameter-free probing for analyzing and interpreting BERT[EB/OL]. (2020-04-30)[2021-11-24]. http://arxiv.org/abs/2004.14786.
21 HEWITT J, LIANG P. Designing and interpreting probes with control tasks[EB/OL]. (2019-09-08)[2023-11-24]. http://arxiv.org/abs/1909.03368.
22 HEWITT J, MANNING C D. A structural probe for finding syntax in word representations[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minnesota: ACL, 2019: 4129-4138.
23 YANG Z, COHEN W, SALAKHUDINOV R. Revisiting semi-supervised learning with graph embeddings[C]//International Conference on Machine Learning. New York: ACL, 2016: 40-48.
24 HARPER F M , KONSTAN J A . The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5 (4): 1- 19.
25 KHOSLA P , TETERWAK P , WANG C , et al. Supervised contrastive learning[J]. Advances in Neural Information Processing Systems, 2020, 33, 18661- 18673.
26 ZITNIK M , LESKOVEC J . Predicting multicellular function through multi-layer tissue networks[J]. Bioinformatics, 2017, 33 (14): i190- i198.
doi: 10.1093/bioinformatics/btx252
27 BORGWARDT K M , ONG C S , SCHÖNAUER S , et al. Protein function prediction via graph kernels[J]. Bioinformatics, 2005, 21 (Suppl 1): i47- i56.
doi: 10.1093/bioinformatics/bti1007
28 DEBNATH A K , LOPEZ DE COMPADRE R L , DEBNATH G , et al. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity[J]. Journal of Medicinal Chemistry, 1991, 34 (2): 786- 797.
doi: 10.1021/jm00106a046
[1] LUO Qi, GOU Gang. Multimodal conversation emotion recognition based on clustering and group normalization [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(7): 105-112.
[2] Xinsheng WANG,Xiaofei ZHU,Chenghong LI. Label guided multi-scale graph neural network for protein-protein interactions prediction [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(12): 22-30.
[3] ZHANG Bin-yan, ZHU Xiao-fei, XIAO Zhao-hui, HUANG Xian-ying, WU Jie. Short text classification based on semi-supervised graph neural network [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 57-65.
[4] YI Jie, ZHONG Mao-sheng, LIU Gen, WANG Ming-wen. Chinese word representation learning based on Gaussian distribution and Chinese character component characteristics [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(5): 85-91.
[5] YU Chuan-ming, FENG Bo-lin, TIAN Xin, AN Lu. Deep representative learning based sentiment analysis in the cross-lingual environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(3): 13-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Ting-ming,LI Bo-tang . Proof of a class of matrix rank identities[J]. J4, 2007, 42(2): 43 -45 .
[2] FU Yonghong 1, YU Miaomiao 2*, TANG Yinghui 3, LI Cailiang 4. [J]. J4, 2009, 44(4): 72 -78 .
[3] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .
[4] SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1 -17 .
[5] ZHANG Ling ,ZHOU De-qun . Research on the relationships among the λ fuzzy measures, Mbius representation and interaction representation[J]. J4, 2007, 42(7): 33 -37 .
[6] DING Chao1, 2, YUAN Chang-an1, 3, QIN Xiao1, 3. A prediction algorithm for multi-data streams  based on GEP[J]. J4, 2010, 45(7): 50 -54 .
[7] ZHANG De-yu,ZHAI Wen-guang . [J]. J4, 2006, 41(5): 4 -07 .
[8] MENG Xiang-bo1, ZHANG Li-dong1, DU Zi-ping2. Investment and reinsurance strategy for insurers under #br# mean-variance criterion with jumps#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 36 -40 .
[9] PENG Zhen-hua, XU Yi-hong*, TU Xiang-qiu. Optimality conditions for weakly efficient elements of nearly preinvex set-valued optimizaton#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 41 -44 .
[10] YUAN Hun-ping . Schur factorization and normal matrices factorization of row (column) symmetric matrices[J]. J4, 2007, 42(10): 123 -126 .