JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (7): 69-83.doi: 10.6040/j.issn.1671-9352.7.2024.452
WU Xiaojun1, CHEN Yidan2, HAO Yaojun1, SONG Changwei3, HE Deqing4
CLC Number:
[1] WANG Boyan, HU Xuegang, LI Peipei, et al. Cognitive structure learning model for hierarchical multi-label text classification[J]. Knowledge-Based Systems, 2021, 218:106876. [2] XIONG Jie, YU Li, NIU Xi, et al. XRR: extreme multi-label text classification with candidate retrieving and deep ranking[J]. Information Sciences, 2023, 622:115-132. [3] KOMEILI M, LOUIS W, ARMANFARD N, et al. Feature selection for nonstationary data:application to human recognition using medical biometrics[J]. IEEE Transactions on Cybernetics, 2017, 48(5):1446-1459. [4] JANET J P, KULIK H J. Resolving transition metal chemical space:feature selection for machine learning and structure-property relationships[J]. The Journal of Physical Chemistry A, 2017, 121(46):8939-8954. [5] BERMINGHAM M L, PONG-WONG R, SPILIOPOULOU A, et al. Application of high-dimensional feature selection: evaluation for genomic prediction in man[J]. Scientific Reports, 2015, 5:10312. [6] HASTIE T, TIBSHIRANI R, FRIEDMAN J. The elements of statistical learning:data mining, inference, and prediction[J]. The Mathematical Intelligencer, 2005, 27(2):83-85. [7] SUN Xin, LIU Yanheng, LI Jin, et al. Using cooperative game theory to optimize the feature selection problem[J]. Neurocomputing, 2012, 97:86-93. [8] KASHEF S, NEZAMABADI-POUR H, NIKPOUR B. Multilabel feature selection:a comprehensive review and guiding experiments[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(2):e1240. [9] YIN Hui, YANG Shuiqiao, SONG Xiangyu, et al. Deep fusion of multimodal features for social media retweet time prediction[J]. World Wide Web, 2021, 24:1027-1044. [10] SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [11] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326. [12] ZHANG Yao, MA Yingcang, YANG Xiaofei. Multi-label feature selection based on logistic regression and manifold learning[J]. Applied Intelligence,2022, 52(8):9256-9273. [13] ZHANG Yao, MA Yingcang. Sparse multi-label feature selection via dynamic graph manifold regularization[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(3):1021-1036. [14] HU Juncheng, LI Yonghao, XU Gaochao, et al. Dynamic subspace dual-graph regularized multi-label feature selection[J]. Neurocomputing, 2022, 467:184-196. [15] 李永豪,胡亮,张平,等. 基于动态图拉普拉斯的多标签特征选择[J]. 通信学报,2020,41(12):47-59. LI Yonghao, HU Liang, ZHANG Ping, et al. Multi-label feature selection based on dynamic graph Laplacian[J]. Journal on Communications, 2020, 41(12):47-59. [16] ZHANG Yao, MA Yingcang. Non-negative multi-label feature selection with dynamic graph constraints[J]. Knowledge-Based Systems, 2022, 238:107924. [17] LI Yonghao, HU Liang, GAO Wanfu. Robust sparse and low-redundancy multi-label feature selection with dynamic local and global structure preservation[J]. Pattern Recognition, 2023, 134:109120. [18] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 26(8):1819-1837. [19] BOUTELL M R, LUO Jiebo, SHEN Xipeng, et al. Learning multi-label scene classification[J]. PatternRecognition, 2004, 37(9):1757-1771. [20] HUANG Jun, LI Guorong, HUANG Qingming, et al. Learning label specific features for multi-label classification[C] // Proceedings of the 2015 IEEE International Conference on Data Mining. Atlantic City, New Jersey, IEEE, 2015:181-190. [21] ZHANG Jia, LUO Zhiming, LI Candong, et al. Manifold regularized discriminative feature selection for multi-label learning[J]. Pattern Recognition, 2019, 95:136-150. [22] HU Juncheng, LI Yonghao, GAO Wanfu, et al. Robust multi-label feature selection with dual-graph regularization[J]. Knowledge-Based Systems, 2020, 203:106126. [23] LI Yonghao, HU Liang, GAO Wanfu. Multi-label feature selection via robust flexible sparse regularization[J]. Pattern Recognition, 2023, 134:109074. [24] CAI Zhiling, ZHU William. Multi-label feature selection via feature manifold learning and sparsity regularization[J]. International Journal of Machine Learning and Cybernetics, 2018, 9:1321-1334. [25] GAO Wanfu, LI Yonghao, HU Liang. Multilabel feature selection with constrained latent structure shared term[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(3):1253-1262. [26] LI Yonghao, HU Liang, GAO Wanfu. Label correlations variation for robust multi-label feature selection[J]. Information Sciences, 2022, 609:1075-1097. [27] HAN Jiuqi, SUN Zhengya, HAO Hongwei. Selecting feature subset with sparsity and low redundancy for unsupervised learning[J]. Knowledge-Based Systems, 2015, 86:210-223. [28] ZHANG Yao, HUO Wei, TANG Jun. Multi-label feature selection via latent representation learning and dynamic graph constraints[J]. Pattern Recognition, 2024, 151:110411. [29] LIN Yaojin, HU Qinghua, LIU Jinghua, et al. Multi-label feature selection based on max-dependency and min-redundancy[J]. Neurocomputing, 2015, 168:92-103. [30] LEE J, KIM D W. SCLS: multi-label feature selection based on scalable criterion for large label set[J]. Pattern Recognition, 2017, 66:342-352. [31] HASHEMI A, DOWLATSHAHI M B, NEZAMABADI-POUR H. MFS-MCDM: multi-label feature selection using multi-criteria decision making[J]. Knowledge-Based Systems, 2020, 206:106365. [32] ZOU Yizhang, HU Xuegang, LI Peipei. Gradient-based multi-label feature selection considering three-way variable interaction[J]. Pattern Recognition, 2024, 145:109900. [33] XU Wei, GONG Yihong. Document clustering by concept factorization[C] // Proceedings of the 27thAnnual International ACM SIGIR Conference on Research and Development in Information Retrieval. Sheffield: ACM, 2004:202-209. [34] FAN K. On a theorem of Weyl concerning eigenvalues of linear transformations I [J]. Proceedings of the National Academy of Sciences, 1949, 35(11):652-655. [35] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788-791. [36] HUANG Jin, NIE Feiping, HUANG Heng. A new simplex sparse learning model to measure data similarity for clustering[C] // Proceedings of the 24th International Joint Conference on Artificial Intelligence. Burlington: Morgan Kaufmann, 2015:3569-3575. [37] LEE D D, SEUNG S H. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing Systems, 2001, 13:556-562. [38] DING C H Q, Li Tao, JORDAN M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 32(1):45-55. [39] ZHANG Minling, ZHOU Zhihua. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7):2038-2048. [40] DOUGHERTY J, KOHAVI R, SAHAMI M. Supervised and unsupervised discretization of continuous features[M].Massachusetts: Morgan Kaufmann, 1995. [41] XUE Guotong, ZHONG Ming, LI Jianxin, et al. Dynamic network embedding survey[J]. Neurocomputing, 2022, 472:212-223. [42] DUNN O J. Multiple comparisons among means[J]. Journal of the American statistical association, 1961, 56(293):52-64. [43] FRIEDMAN M. A comparison of alternative tests of significance for the problem ofm rankings[J]. The Annals of Mathematical Statistics, 1940, 11(1):86-92. |
[1] | CHENG Yuxuan, MAO Yu, ZHANG Xiaoqing, ZENG Yixiang, LIN Yaojin. Online multi-label feature selection based on sub-correlation features and neighborhood mutual information [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(5): 70-81. |
[2] | ZHANG Shandan, WENG Wei, XIE Xiaozhu, WEI Bowen, WANG Jinbo, WEN Juan. Global and local relationships based on multi-label classification algorithm with label-specific features [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(5): 23-34. |
[3] | CHEN Yumin, ZHENG Guangyu, JIAO Na. Multi-label learning based on granular neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(5): 1-11. |
[4] | GAO Hefei, LI Yan, WANG Shuo. Feature selection for partial label learning based on neighborhood rough sets [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(5): 100-113. |
[5] | ZHU Liquan, LIN Yaojin, MAO Yu, CHENG Yuxuan. Multi-label online stream feature selection based on high-dimensional correlation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(5): 90-99. |
[6] | Chunyu SHI,Yu MAO,Haoyang LIU,Yaojin LIN. Hierarchical feature selection algorithm based on instance correlations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(3): 61-70. |
[7] | WANG Tinghua, HU Zhenwei, ZHAN Hongxiang. A novel unsupervised feature selection method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(12): 130-140. |
[8] | ZHANG Zhi-hao, LIN Yao-jin, LU Shun, WU Yi-lin, WANG Chen-xi. Multi-label feature selection with streaming and missing labels [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 39-52. |
[9] | SUN Lin, CHEN Yu-sheng, XU Jiu-cheng. Multilabel feature selection algorithm based on improved ReliefF [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 1-11. |
[10] | SUN Lin, LIANG Na, XU Jiu-cheng. Feature selection using adaptive neighborhood mutual information and spectral clustering [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 13-24. |
[11] | ZHANG Yao, MA Ying-cang, YAND Xiao-fei, ZHU Heng-dong, YANG Ting. Multi-label feature selection based on manifold structure and flexible embedding [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(7): 91-102. |
[12] | Ying YU,Xin-nian WU,Le-wei WANG,Ying-long ZHANG. A multi-label three-way classification algorithm based on label correlation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(3): 81-88. |
[13] | HUANG Tian-yi, ZHU William. Cost-sensitive feature selection via manifold learning [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(3): 91-96. |
[14] | WAN Zhong-ying, WANG Ming-wen, ZUO Jia-li, WAN Jian-yi. Feature selection combined with the global and local information(GLFS) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 87-93. |
[15] | LI Zhao,SUN Zhan-,LI Xiao,LI Cheng,. Study on feature selection method based on information loss [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(11): 7-12. |
|